数学思想的一大进步证明.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
2 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 思想 进步 证明
- 资源描述:
-
1、数学思想的一大进步-证明公元前7世纪的古希腊人喜欢旅行和经商,这些活动使他们接触许多数学知识。他们被数学知识吸引住,很敬畏,但又觉得不满足。他们认为,不仅应该知道有哪些数学知识,而且应该知道为什么有这些数学知识。在这种“研究为什么”的精神支配下,他们在人类历史上第一次提出了对一切数学进步起决定性作用的两个心理过程:抽象与证明。抽象就是从不同的事物中找出共同的东西,并从中形成一般概念。例如:从苹果、梨、香蕉、葡萄中抽象出“水果”;从正午的太阳、十五的月亮、马车的轮子、茶杯的杯口中抽象出“圆”;从牛、马、猫、狗中抽象出“动物”,又从“动物”、“植物”中抽象出“生物”等。证明则是一种从“题设”到“结
2、论”的论证过程,并且要求论证的每一步都不出毛病。希腊人把“题设”叫做“前提”,并把它分为两种:第一种是普遍性的“前提”,他们称之为“公理”;第二种是特殊的数学上的“前提”,他们称之为“公设”。另外,他们还设计出“归纳”、“演绎”、“反证”等思维方法和技巧。凡是能用“公理”和“公设”证明出来的命题,叫做“定理”。由“定理”必然能推导出来的命题,叫做这个定理的“推论”。古希腊人是以几何学作为抽象与证明的舞台的。在这方面起过巨大作用的数学家有柏拉图、泰勒斯、尤多苏斯、毕达哥拉斯、欧几里得、阿波罗尼斯、阿基米德、埃拉托瑟尼、希巴克思、齐诺等。下面我们要向同学们特别介绍一下几何大师欧几里得的情况。欧几里
3、得(约公元前330275年)是亚历山大里亚的学者,早年曾在柏拉图创设的学院里学过数学。他本人不是一生伟大的革新家,但却是希腊的几何黄金时代出现的名人泰勒斯、尤多苏斯等人所取得的数学成果的杰出组织者。他极善于把前人的证明用更简洁、更明确的话加以改写。经过这详简化以后,均被收人其杰作几何原本里。这部书共13卷,它叙述并证明了一大批人类所知道的有关点、线、圆以及简单立体的知识。所有这些信息都是从以下5个公理、5个公设即一共10个简单的“前提”,用最能增进思考能力的逻辑推理方法得出的:公理1 等于同量的量相等。公理2 等量加上等量,和相等。公理3 等量减去等量,差相等。公理4 能够重合的量相等。公理5
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
