新人教版高中数学精品论文集:数学课堂中引入艺术初探资料新课标.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 高中数学 精品 论文集 数学 课堂 引入 艺术 初探 资料 新课
- 资源描述:
-
1、地址:江苏省前黄高级中学数学组邮编:213161姓名:殷铭娴 yinmingxian学校:江苏省前黄高级中学数学课堂中问题引入艺术初探“良好的开端等于成功的一半。”我们知道,一堂生动活泼的、具有教学艺术魅力的好课犹如一支宛转悠扬的乐曲,“起调”扣人心弦,“主旋律”引人入胜,“终曲”余音绕梁。其中“起调”,也就是课堂教学中的引入问题,起着关键性的作用。生动形象、立意巧妙的引入设计能拨动学生的心弦,立疑激趣,促使学生的学习情绪高涨,自觉主动地步入智力振奋状态,充分调动探求新知的积极性和自觉性。经过反复实践、多方借鉴、不断总结,发现高中数学课堂的引入设计也是有多种模式可循的。在设计引入问题时,不管这
2、样的设计都必须考虑到以下四个环节:“描述”:“我是怎样设计的”;“领悟”:“我这样设计意味着什么”,寻找隐藏在设计背后的假说、观念等;“正视”:“我怎么会这样设计”,以了解自己的假说、观念或设计活动中的其他因素;“改造”:“我怎样才能更加有效地进行问题设计”,寻求完善创造性设计的方法和途径。一、类比法案例:第六章不等式中,“绝对值不等式”第一课时的课堂引入可以这样设计:我们已经知道 ,对于任意两个实数a,b,有,那么成立吗?学生很快可以通过举反例发现,这两个式子并不成立,那么必须进一步思考:与之间有没有联系呢?进而引出本课研究的绝对值不等式: 。类比思维的认识依据是事物间具有相似性.类比也是发
3、现真理的主要工具。从数学问题的发现或提出新命题的过程来看,大量也是从具体问题或素材出发,经过类比联想等途径,形成命题(猜想)再加以确认的。教材中属性相似的内容占有较大比例,如指数函数与对数函数;四种三角函数及反三角函数;等差数列与等比数列;四种二次曲线(圆、椭圆、抛物线、双曲线);空间几何性质与平面几何性质;三种多面体及四种旋转体等。在教学时,可抓住其发生过程、内涵、结构、性质以及解决问题的数学思想方法等方面的相似性来设计问题的引入,由此及彼,触类旁通。二、归纳法案例:在“等差数列”第一课时的教学中,我这样设计的:观察下列各数列,你能发现它们有什么共同的特点?具有什么性质?1,2,3,4,5,
4、6,7,8,3,6,9,12,15,18,21,24,1,3,5,7,9,11,13,15,2,2,2,2,2,2,2,2,2,这样设计可以培养学生观察能力、抽象概括能力。它具有启发性、开放性,有能力发展点,个性和创新精神培养点。学生已具备一定的观察能力和抽象概括能力,完全有条件、有可能发现它们的共同特点和性质。从个别的或特殊的经验事实出发而概括得出一般原理的思维方法即归纳法在数学思想方法是比较常用的一种,是发现真理的主要工具。从数学问题的发现或提出新命题的过程看,大量是从具体问题或素材出发,经过归纳、观察、实验等不同的途径,形成命题(猜想)再加以确认.教材中大量的概念及部分公式、定理都是使用
5、归纳法来验证与推导的。按照“观察猜想证明”的思维模式设计问题,符合学生的认知规律,更培养学生完整地认识数学体系。三、实验法案例:椭圆及其标准方程第一课时的设计如下:课前,将事先准备好的圆形纸片给每位同学发一张,让大家按这样的步骤进行,在圆内部任意找一个不同于圆心的点A;在圆周上30个等分点,分别记为B1、B2、B30;折叠圆纸片,使圆周上的点B1与点A重合,展开纸片后得到一条折痕;重复上一步骤,使圆周上其余各点与A点重合,得到30条对应的折痕;最后展开纸片,可以发现未被折痕覆盖到的区域正是一个椭圆的形状。这样的引入方法比之常规引入法更新颖、更具吸引力,使学生感性地认识椭圆这一几何图形,尤其是通
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
普通高级中学英语课程标准解读.ppt
