2019届高考数学文科二轮分类突破训练:第一篇考点七 考查角度2 椭圆的标准方程与几何性质 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019届高考数学文科二轮分类突破训练:第一篇考点七 考查角度2椭圆的标准方程与几何性质 WORD版含解析 20
- 资源描述:
-
1、考查角度2椭圆的标准方程与几何性质分类透析一椭圆的定义及其应用例1 如图,已知椭圆的方程为x24+y23=1,若点P在第二象限,且PF1F2=120,则PF1F2的面积为.解析 由已知得a=2,b=3,所以c=a2-b2=1,F1F2=2c=2.在PF1F2中,由余弦定理得PF22=PF12+F1F22-2PF1F1F2cos 120,即PF22=PF12+4+2PF1.由椭圆定义,得PF1+PF2=4,即PF2=4-PF1.将代入,得PF1=65.所以SPF1F2=12PF1F1F2sin 120=1265232=335,即PF1F2的面积为335.答案 335方法技巧 在涉及椭圆焦点的PF
2、1F2中,由椭圆的定义及余弦定理可得到关于PF1,PF2的方程组,消去PF2可求得PF1.分类透析二椭圆的标准方程及求解例2 中心在坐标原点的椭圆,焦点在x轴上,焦距为4,离心率为22,则椭圆的方程为().A.x216+y212=1B.x212+y28=1C.x212+y24=1D.x28+y24=1解析 由题意知,2c=4,则c=2.又e=ca=22,则a=22,故b=2,所以椭圆的方程为x28+y24=1.答案 D方法技巧 本题通过椭圆的简单几何性质确定其标准方程,解决此类问题时,一般先确定其焦点位置,然后建立或寻找a,b,c的等量关系,最后确定这三个数的值.分类透析三椭圆的几何性质及应用
3、例3 若点(x,y)在x24+y2b2=1(b2)上运动,则x2+4y的最大值为.解析 x24+y2b2=1(b2),x2=41-y2b20,即-byb.x2+4y=41-y2b2+4y=-4y2b2+4y+4=-4b2y-b222+4+b2.b2,b22b.当y=b时,x2+4y取得最大值,最大值为4b.答案 4b方法技巧 此类最值问题常用函数思想进行解决.很多与圆锥曲线有关的问题中的各个量在运动变化时,都是相互联系、相互制约的,它们之间构成函数关系.这类问题若用函数思想来分析、寻找解题思路,会有很好的效果.1.(2016年全国卷,文12改编)已知O为坐标原点,F是椭圆C:x2a2+y2b2
4、=1(ab0)的左焦点,A、B分别为C的左、右顶点.P为C上一点,且PFx轴.直线BP交y轴于点M,BM=2MP,则C的离心率为().A.13B.12C.23D.34解析 根据三角形相似,得BMOBPF,故BMMP=|MB|MP|=|OB|OF|=ac=2,e=ca=12,故选B.答案 B2.(2018年全国卷,理12改编)已知F1、F2分别是椭圆C:x24+y2b2=1(0b0,过P作x轴的垂线并交于点H,易知AOQAHP,所以AQQP=2=|AO|OH|=2x0,得x0=1.又因为y0x0+2=12,所以得y0=32,又因为点P在椭圆上,所以14+322b2=1,解得b=3.(法二)由题意
5、知,A(-2,0),Q(0,1).因为AQ=2QP,所以P1,32,代入椭圆方程得14+94b2=1,解得b2=3,则b=3,故选B.答案 B3.(2018年浙江卷,17改编)已知点F1(-c,0)、F2(c,0)(c0)分别是椭圆x2a2+y2b2=1(ab0)的左、右焦点,点P是这个椭圆上位于x轴上方的点,点G是PF1F2的外心,若存在实数,使得GF1+GF2+GP=0,则当PF1F2的面积为8时,a的最小值为.解析 因为点G是PF1F2的外心,所以点G在y轴的正半轴上,又GF1+GF2+GP=0,则GP=-1(GF1+GF2)=-2GO,所以P,G,O三点共线,即P位于上顶点,则PF1F
6、2的面积S=12b2c=bc=8.由a2=b2+c22bc=16,得a4,当且仅当b=c=22时取等号,所以a的最小值为4.答案 41.(山西省榆社中学2018届高三诊断性模拟考试)若椭圆x24+y2m=1上一点到两焦点的距离之和为m-3,则椭圆的离心率为().A.53B.53或217C.217D.37或59解析 由题意知,2a=m-30,即m3,若a2=4,即a=2,则m-3=4,m=74,不合题意,因此a2=m,即a=m,则2m=m-3,解得m=9,即a=3,c=m-4=5,所以椭圆的离心率e=53.故选A.答案 A2.(山东省枣庄市2018届高三第二次模拟考试)设F1,F2分别是椭圆C:
7、x2m+y22=1的两个焦点,若C上存在点M满足F1MF2=120,则实数m的取值范围是().A.0,128,+)B.(0,18,+)C.0,124,+)D.(0,14,+)解析 由椭圆的性质可知,当点M在短轴的端点时,此时F1MF2最大.如图,要使得椭圆C上存在点M满足F1MF2=120,则F1M0F2120,即OM0F260.当m2时,|OM0|M0F2|=ba=cosOM0F2cos 60=12,即2m12,解得m8;当0m2时,|OM0|M0F2|=ba=cosOM0F2cos 60=12,即m212,解得0b0)的左焦点为F1(-2,0),过点F1作倾斜角为30的直线与圆x2+y2=
8、b2相交的弦长为3b,则椭圆的标准方程为().A.y28+x24=1B.x28+y24=1C.y216+x212=1D.x216+y212=1解析 由左焦点为F1(-2,0),可得c=2,即a2-b2=4.由题意知,直线的方程为y=33(x+2),圆心(0,0)到直线的距离d=233+9=1,则2b2-1=3b,解得b=2,a=22,故椭圆的标准方程为x28+y24=1,故选B.答案 B4.(四川省广元市2018届高三第二次高考适应性统考)如图,已知椭圆C1:x2m+y2=1(m1),双曲线C2:x2a2-y2b2=1(a0,b0)的离心率e=5,若以C1的长轴为直径的圆与C2的一条渐近线交于
9、A,B两点,且C1与C2的渐近线的两个交点将线段AB三等分,则m=().A.17B.17C.11D.11解析 因为双曲线的离心率5=1+b2a2,所以ba=2,双曲线渐近线为y=2x.代入椭圆方程得x2=m1+4m,y2=(2x)2=4m1+4m,故C1与C2的渐近线的两个交点弦长为2x2+y2=25m1+4m,依题意可知25m1+4m=132m,解得m=11.答案 D5.(安徽省黄山市2018届高三一模检测)已知椭圆和双曲线有共同焦点F1,F2,P是它们的一个交点,且F1PF2=3,记椭圆和双曲线的离心率分别为e1,e2,则1e1e2的最大值为().A.233B.433C.2D.3解析 设F
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-569832.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
数据驱动方法在中医英语ESP教学的应用.pdf
