2019数学(理)二轮教案:专题二第二讲 三角恒等变换与解三角形 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019数学理二轮教案:专题二第二讲 三角恒等变换与解三角形 WORD版含解析 2019 数学 二轮 教案 专题 第二 三角 恒等 变换 三角形 WORD 解析
- 资源描述:
-
1、第二讲三角恒等变换与解三角形年份卷别考查角度及命题位置命题分析及学科素养2018卷利用正、余弦定理解三角形T17命题分析三角变换及解三角形是高考考查的热点,然而单独考查三角变换的题目较少,题目往往以解三角形为背景,在应用正弦定理、余弦定理的同时,经常应用三角变换进行化简,综合性比较强,但难度不大学科素养三角变换及解三角形在学生能力考查中主要考查逻辑推理及数学运算两大素养,通过三角恒等变换及正、余弦定理来求解相关问题.卷二倍角公式应用及余弦定理解三角形T6卷三角变换求值T4解三角形T92017卷三角变换与正弦定理解三角形T17卷三角变换与余弦定理解三角形T17卷利用余弦定理解三角形及面积问题T1
2、72016卷三角恒等变换求值问题T9卷三角恒等变换求值问题T5解三角形(正、余弦定理)T8三角恒等变换授课提示:对应学生用书第22页悟通方法结论三角函数恒等变换“四大策略”(1)常值代换:特别是“1”的代换,1sin2cos2tan 45等;(2)项的分拆与角的配凑:如sin22cos2(sin2cos2)cos2,()等;(3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次;(4)弦、切互化:一般是切化弦全练快速解答1(2018合肥模拟)sin 18sin 78cos 162cos 78()A B C. D.解析:sin 18sin 78cos 162cos 78sin 18sin 78
3、cos 18cos 78cos(7818)cos 60,故选D.答案:D2(2018高考全国卷)若sin ,则cos 2()A. B. CD解析:sin ,cos 212sin2122.故选B.答案:B3(2018沈阳模拟)已知tan 2,则sin2的值为()A. B. C.D.解析:原式sin2,将tan 2代入,得原式,故选C.答案:C4(2017高考全国卷)已知(0,),tan 2,则cos()_.解析:(0,),tan 2,sin ,cos ,cos()cos cos sin sin ().答案:三角函数式的化简方法及基本思路(1)化简方法弦切互化,异名化同名,异角化同角,降幂或升幂,
4、“1”的代换,辅助角公式等(2)化简基本思路“一角二名三结构”,即:一看“角”,这是最重要的一环,通过角之间的差别与联系,把角进行合理地拆分,从而正确使用公式;二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”,关于sin cos 的齐次分式化切等;三看“结构特征”,分析结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇根式化被开方式为完全平方式”等解三角形的基本问题及应用授课提示:对应学生用书第22页悟通方法结论正、余弦定理、三角形面积公式(1)2R(R为ABC外接圆的半径)变形:a2Rsin A,b2Rsin B,c2Rsin C;sin A,sin B
5、,sin C;abcsin Asin Bsin C.(2)a2b2c22bccos A,b2a2c22accos B,c2a2b22abcos C.推论:cos A,cos B,cos C.变形:b2c2a22bccos A,a2c2b22accos B,a2b2c22abcos C.(3)SABCabsin Cacsin Bbcsin A.(1)(2017高考全国卷)ABC的内角A,B,C的对边分别为a,b,c.已知sin Bsin A(sin Ccos C)0,a2,c,则C()A.B.C.D.解析:因为sin Bsin A(sin Ccos C)0,所以sin(AC)sin Asin C
6、sin Acos C0,所以sin Acos Ccos Asin Csin Asin Csin Acos C0,整理得sin C(sin Acos A)0,因为sin C0,所以sin Acos A0,所以tan A1,因为A(0,),所以A,由正弦定理得sin C,又0C1,ACAB,当ABC的周长最短时,BC的长是_解析:设ACb,ABc,BCa,ABC的周长为l,由bc,得labca2c.又cos 60,即aba2b2c2,得aa22c2,即c.la2ca33,当且仅当a1时,ABC的周长最短,此时a1,即BC的长是1.答案:1解三角形的综合问题授课提示:对应学生用书第23页悟通方法结论
7、三角形中的常用结论(1)ABC,.(2)在三角形中大边对大角,反之亦然(3)任意两边之和大于第三边,任意两边之差小于第三边(4)在ABC中,tan Atan Btan Ctan Atan Btan C(A,B,C)(2017高考全国卷)(12分)ABC的内角A,B,C的对边分别为a,b,c,已知(1);(2)若,求b.学审题条件信息想到方法注意什么信息:两角和与半角的三角等式关系三角形内角和定理及倍角公式(1)三角形中的三角恒等关系式化简时,三角形内角和定理及倍角公式的正确使用(2)转化与化归思想、整体代入思想在解题过程中的应用 信息:求cos B化已知条件为cos B的关系式信息:ac6寻找
8、平方后与余弦定理中a2c2的关系式信息:三角形面积为2利用面积公式来求ac的值规范解答(1)由题设及ABC得sin B8sin2, (2分)即sin B4(1cos B), (3分)故17cos2B32cos B150, (4分)解得cos B,cos B1(舍去) (6分)(2)由cos B,得sin B, (7分)故SABCacsin Bac. (8分)又SABC2,则ac. (9分)由余弦定理及ac6得b2a2c22accos B(ac)22ac(1cos B) (10分)3624. (11分)所以b2. (12分)1与三角形面积有关的问题的解题模型2学科素养:通过三角恒等变换与利用正、
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-572114.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
