2020-2021学年高中数学新教材人教A版必修第二册教案:9-2 用样本估计总体 (1) WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020-2021学年高中数学新教材人教A版必修第二册教案:9-2 用样本估计总体 1 WORD版含解析 2020 2021 学年 高中数学 新教材 必修 第二 教案 样本 估计 总体 WORD 解析
- 资源描述:
-
1、9.2.3 总体集中趋势的估计本节普通高中课程标准数学教科书-必修二(人教A版)第九章9.2.3 总体集中趋势的估计,本节课通过对反映样本数据集中趋势量;平均数、众数、中位数的回顾,进一步学习在频率分布直方图中对三个量的算法,同时加深对它们的理解和应用。进一步体会用样本估计总体的思想与方法。从而发展学生的直观想象、逻辑推理、数学建模的核心素养。课程目标学科素养A.结合实例,能用样本估计总体的集中趋势参数(众数、中位数、平均数)B.会求样本数据的众数、中位数、平均数C.理解集中趋势参数的统计含义.1.数学建模:在具体情境中运用众数、中位数、平均数 2.逻辑推理:运用众数、中位数、平均数进行判断3
2、.数学运算: 计算众数、中位数、平均数4.数据分析:众数、中位数、平均数的含义1.教学重点:会求样本数据的众数、中位数、平均数2.教学难点:理解集中趋势参数的统计含义.多媒体教学过程教学设计意图核心素养目标一、温故知新1、定义:一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.2、计算一组n个数据的第p百分位数的步骤:第1步,按从小到大排列原始数据.第2步,计算i=np%.第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第(i+1)项数据的平
3、均数.3、根据频率分布直方图(频率分布表)计算样本数据的百分位数:首先要理解频率分布直方图中各组数据频率的计算,其次估计百分位数在哪一组,再应用方程的思想方法,设出百分位数,解方程可得众数:在一组数据中,出现次数最多的数据.中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)做一做1判断下列说法是否正确(正确的打“”,错误的打“”)(1)改变一组数据中的一个数,则这些数据的平均数一定会改变()(2)改变一组数据中的一个数,则其中位数也一定会改变()(3)在频率分布直方图中,众数是最高矩形中点的横坐标();2、求下列各组数据的众数(1)、1 ,2,3,3,3,
4、5,5,8,8,8,9,9众数是:3和8(2)、1 ,2,3,3,3,5,5,8,8,9,9 众数是:33、求下列各组数据的中位数(1)、1 ,2,3,3,3,4,6,8,8,8,9,9中位数是:5(2)1 ,2,3,3,3,4,8,8,8,9,9中位数是:44.在一次中学生田径运动会上,参加男子跳高的17名运动员的成绩如下表所示:成绩(米)150160165170175180185190人数23234111分别求这些运动员成绩的众数,中位数与平均数 。解:在17个数据中,1.75出现了4次,出现的次数最多,即这组数据的众数是1.75上面表里的17个数据可看成是按从小到大的顺序排列的,其中第9
5、个数据1.70是最中间的一个数据,即这组数据的中位数是1.70;答:17名运动员成绩的众数、中位数、平均数依次是1.75(米)、1.70(米)、1.69(米)。 这组数据的平均数是二、探究新知为了了解总体的情况,前面我们研究了如何通过样本的分布规律估计总体的分布规律,但有时候,我们可能不太关心总体的分布规律,而更关注总体取值在某一方面的特征,例如,对于某县今年小麦的收成情况,我们可能会更关注该县今年小麦的总产量或平均每公顷的产量,而不是产量的分布;对于一个国家国民的身高情况,我们可能会更关注身高的平均数或中位数,而不是身高的分布;等等. 在初中的学习中我们已经了解到,平均数、中位数和众数等都是
6、刻画“中心位置”的量,它们从不同角度刻画了一组数据的集中趋势。 下面我们通过具体实例进一步了解这些量的意义,探究它们之间的联系与区别,并根据样本的集中趋势估计总体的集中趋势.例1. 利用下表中100户居民用户的月均用水量的调查数据,计算样本数据的平均数和中位数,并据此估计全市居民用户月均用水量的平均数和中位数.9.0 13.6 14.9 5.9 4.0 7.1 6.4 5.4 19.4 2.0 2.2 8.6 13.8 5.4 10.2 4.9 6.8 14.0 2.0 10.5 2.1 5.7 5.1 16.8 6.0 11.1 1.3 11.2 7.7 4.9 2.3 10.0 16.7
7、12.0 12.4 7.8 5.2 13.6 2.4 22.43.6 7.1 8.8 25.6 3.2 18.3 5.1 2.0 3.0 12.0 22.2 10.8 5.5 2.0 24.3 9.9 3.6 5.6 4.4 7.9 5.1 24.5 6.4 7.5 4.7 20.5 5.5 15.7 2.6 5.7 5.5 6.0 16.0 2.4 9.5 3.7 17.0 3.8 4.1 2.35.3 7.8 8.1 4.3 13.3 6.8 1.3 7.0 4.9 1.8 7.1 28.0 10.2 13.8 17.9 10.1 5.5 4.6 3.2 21.6所以估计全市居民用户的月均
8、用水量约为8.79t,其中位数约为6.6t.跟踪练习1. 小明用统计软件计算了100户居民用水量的平均数和中位数,但在录入数据不小心把一个数据7.7录成了77.请计算录入数据的平均数和中位数.思考:并与真实的样本平均数和中位数作比较。哪个量的值变化更大?你能解释其中的原因吗? 平均数由原来的8.79t变为9.483t,中位数没有变化.这是因为样本平均数与每一个样本数据有关,样本中的任何一个数据的改变会引起平均数的改变;但中位数只利用了样本数据中间位置的一个或两个值,并未利用其他数据,所以不是任何一个样本数据的改变都会引起中位数的改变,因此,与中位数较,平均数反映出样本数据中的更多信息,对样本中
9、的极端值更加敏感.平均数和中位数都描述了数据的集中趋势,它们的大小关系和数据分布的形态有关.在下图的三种频率分布直方图形态中,平均数和中位数的大小存在什么关系?例2.某学校要定制高一年级的校服,学生根据厂家提供的参考身高选择校服规格,据统计,高一年级女生需要不同规格校服的频数如下表所示,校服规格155160165170175合计频数39641679026386如果用一个量来代表该校高一年级女生所需校服的规格,那么在中位数、平均数和数中,哪个量比较合适?试讨论用上表中的数据估计全国高一年级女生校服规格的合理性.分析:虽然校服规格是用数字表示的,但它们事实上是几种不同的类别,对于这样的分类数据,用
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-582279.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
