分享
分享赚钱 收藏 举报 版权申诉 / 24

类型2020年山东省青岛中考数学试卷附答案解析版.docx

  • 上传人:a****
  • 文档编号:588886
  • 上传时间:2025-12-11
  • 格式:DOCX
  • 页数:24
  • 大小:395.77KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2020 山东省 青岛 中考 数学试卷 答案 解析
    资源描述:

    1、绝密启用前在2020 年山东省青岛市初中学业水平考试数学则点 A 的对应点 A 的坐标是()此说明:(考试时间:120 分钟;满分:120 分)A. (0,4)B. (2,- 2)C. (3,- 2)D. (-1,4)1.本试题分第卷和第卷两部分,共 24 题.第卷为选择题,共 8 小题,24 分;第卷为填空题、作图题、解答题,共 16 小题,96 分.卷2.所有题目均在答题卡上作答,在试题上作答无效.考生号第卷(共 24 分)一、选择题(本大题共 8 小题,每小题 3 分,共 24 分)1. -4 的绝对值是()6. 如图, BD 是 O 的直径,点 A , C 在 O 上, AB = AD

    2、 , AC 交 BD 于点G 若COD =126 则AGB 的度数为()A.99B.108C.110D.1177. 如图,将矩形 ABCD 折叠,使点C 和点 A 重合,折痕为 EF ,EF 与 AC 交于点O .若AE = 5 , BF = 3,则 AO 的长为()上A.4B. -4C. 1 4D. - 142. 下列四个图形中,中心对称图形是()5A. B. 3 555姓名答2C. 2 D. 4 ABCD3.2020 年 6 月 23 日,中国第 55 颗北斗导航卫星成功发射,顺利完成全球组网其中支题持北斗三号新信号的 22 纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.22 纳米

    3、=0.000 000 022 米,将 0.000 000 022 用科学记数法表示为()8. 已知在同一直角坐标系中,二次函数 y = ax2 + bx 和反比例函数 y = c 的图象如图所示,x则一次函数 y = c x - b 的图象可能是()aA. 22 108B. 2.210-8C. 0.2210-7D. 2210-9毕业学校4. 如图所示的几何体,其俯视图是()无ABCD第卷(共 96 分)3二、填空题(本大题共 6 小题,每小题 3 分,共 18 分)9.计算 12 -4 3 的结果是效ABCD5. 如图,将ABC 先向上平移1 个单位,再绕点 P 按逆时针方向旋转90,得到AB

    4、C ,10. 某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试,测试成绩如下表所示如果将学历、经验和工作态度三项得分按 2:1:3 的比例确定两人的最终得分,并以此为依据确定录用者,那么将被录用(填甲或乙).四、解答题(本大题共 9 小题,共 74 分)16.(本题每小题 4 分,共 8 分)应聘者项目甲乙学历98经验76工作态度57 1 1 a b (1)计算: + - ;11. 如图,点 A 是反比例函数 y = k ( x 0) 图象上的一点, AB 垂直于 x 轴,垂足为 B ,xOAB 的面积为 6若点 P(a,7) 也在此函数的图象上,

    5、则 a = 12. 抛物线 y = 2x2 + 2(k -1) x - k ( k 为常数)与 x 轴交点的个数是13. 如图,在正方形 ABCD 中,对角线 AC 与 BD 交于点O ,点 E 在CD 的延长线上,连接 AE ,点 F 是 AE 的中点,连接OF 交 AD 于点G 若 DE = 2 , OF = 3 ,则点 A 到 DF 的距离为14. 如图,在ABC 中,O 为 BC 边上的一点,以O 为圆心的半圆分别与 AB , AC 相切 a b b a 2x - 3- 5, x + 2 x.(2)解不等式组: 1317.(本小题满分 6 分)小颖和小亮都想去观看“垃圾分类”宣传演出,

    6、但只有一张入场券,于是他们设计 了一个“配紫色”游戏:A,B 是两个可以自由转动的转盘,每个转盘都被分成面积相等 的几个扇形.同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色, 那么可以配成紫色若配成紫色,则小颖去观看,否则小亮去观看这个游戏对双方公 平吗?请说明理由18.(本小题满分 6 分)如图,在东西方向的海岸上有两个相距 6 海里的码头 B , D ,某海岛上的观测塔 A 距离海岸 5 海里,在 A 处测得 B 位于南偏西 22方向一艘渔船从 D 出发,沿正北方向航行至C 处,此时在 A 处测得C 位于南偏东 67方向.求此时观测塔 A 与渔船C 之间的距离(结果精确

    7、到 0.1 海里)sin 22 3,cos 22 15,tan 22 2, 8165于点 M , N 已知BAC =120 , AB + AC =16 , MN 的长为 ,则图中阴影部分(参考数据:12512 )sin 67 ,cos 67 ,tan 67 的面积为三、作图题(本大题满分 4 分)请用直尺、圆规作图,不写作法,但要保留作图痕迹.15. 已知: ABC .求作: O ,使它经过点 B 和点C ,并且圆心O 在A 的平分线上.1313519.(本小题满分 6 分)某校为调查学生对海洋科普知识的了解情况,从全校学生中随机抽取n 名学生进行在 测试,测试成绩进行整理后分成五组,并绘制成

    8、如下的频数直方图和扇形统计图此卷考生号请根据图中信息解答下列问题:(1)补全频数直方图;上(2)在扇形统计图中,“7080”这组的百分比m =;(3)已知“8090”这组的数据如下:81,83,84,85,85,86,86,86,87,88,88,89抽取的n 名学生测试成绩的中位数是分;(4)若成绩达到 80 分以上(含 80 分)为优秀,请你估计全校 1 200 名学生对海洋科普知识了解情况为优秀 学生人数答 20.(本小题满分 8 分)姓名为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为480 m3 ,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变.同时打开甲、

    9、乙两个进水口注水,游泳池的蓄水量 y (m3 ) 与注水时间t (h) 之间满足一次函数关系,其图象如图题 所示毕业学校无(1)根据图象求游泳池的蓄水量 y (m3 ) 与注水时间t (h) 之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;效(2)现将游泳池的水全部排空,对池内消毒后再重新注水已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的 4 倍求单独打开甲进3水口注满游泳池需多少小时?21.(本小题满分 8 分)如图,在 ABC 中,对角线 AC 与 BD 相交于点O ,点 E ,F 分别在 BD 和 DB 的延长线上,且 DE = BF ,连接 A

    10、E , CF (1) 求证: ADECBF ;(2) 连接 AF , CE ,当 BD 平分ABC 时,四边形 AFCE 是什么特殊四边形?请说明理由22.(本小题满分 10 分)某公司生产 A 型活动板房成本是每个 425 元图表示 A 型活动板房的一面墙,它由长方形和抛物线构成,长方形的长 AD = 4m ,宽 AB = 3m ,抛物线的最高点 E 到 BC 的距离为4m (1) 按如图所示的直角坐标系,抛物线可以用 y = kx2 + m(k 0) 表示.求该抛物线的函数表达式;(2) 现将 A 型活动板房改造为 B 型活动板房如图,在抛物线与 AD 之间的区 域内加装一扇长方形窗户 F

    11、GMN ,点G , M 在 AD 上,点 N , F 在抛物线上,窗户的成本为50元/ m2 已知GM = 2m ,求每个 B 型活动板房的成本是多少?(每个 B 型活动板房的成本每个 A 型活动板房的成本+一扇窗户 FGMN 的成本)(3) 根据市场调查,以单价 650 元销售(2)中的 B 型活动板房,每月能售出 100个,而单价每降低 10 元,每月能多售出 20 个公司每月最多能生产 160 个 B 型活动板房不考虑其他因素,公司将销售单价n (元)定为多少时,每月销售 B 型活动板房所获利润 w (元)最大?最大利润是多少?23.(本小题满分 10 分) 实际问题:某商场为鼓励消费,

    12、设计了投资活动方案如下:根据不同的消费金额,每次抽奖时可以从 100 张面值分别为 1 元、2 元、3 元、100 元的奖券中(面值为整数),一次任意抽取 2 张、3 张、4 张、等若干张奖券,奖券的面值金额之和即为优惠金额某顾客获得了一次抽取 5 张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额?问题建模:从 1,2,3,n( n 为整数,且n3 )这n 个整数中任取a (1 a n) 个整数,这a 个整数之和共有多少种不同的结果? 模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法探究一:所取的 2 个整数1,21,3,2,32 个整数之

    13、和345(1) 从 1,2,3 这 3 个整数中任取 2 个整数,这 2 个整数之和共有多少种不同的结果?表如表,所取的 2 个整数之和可以为 3,4,5,也就是从 3 到 5 的连续整数,其中最小是 3,最大是 5,所以共有 3 种不同的结果所取 2 个整数1,21,3,1,42,32,43,42 个整数之和345567(2) 从 1,2,3,4 这 4 个整数中任取 2 个整数,这 2 个整数之和共有多少种不同的结果?表如表,所取的 2 个整数之和可以为 3,4,5,6,7,也就是从 3 到 7 的连续整数, 其中最小是 3,最大是 7,所以共有 5 种不同的结果(3) 从 1,2,3,4

    14、,5 这 5 个整数中任取 2 个整数,这 2 个整数之和共有 种不同的结果(4) 从 1,2,3, n ( n 为整数,且n3 )这n 个整数中任取 2 个整数,这 2个整数之和共有种不同的结果 探究二:(1) 从 1,2,3,4 这 4 个整数中任取 3 个整数,这 3 个整数之和共有种不同的结果(2) 从 1,2,3, n ( n 为整数,且n4 )这n 个整数中任取 3 个整数,这 3个整数之和共有种不同 结果 探究三:从 1,2,3, n ( n 为整数,且n5 )这n 个整数中任取 4 个整数,这 4 个整数之和共有种不同的结果归纳结论:从 1,2,3,n( n 为整数,且n3 )

    15、这n 个整数中任取a (1 a n) 个整数,这a 个整数之和共有种不同的结果 问题解决:从 100 张面值分别为 1 元、2 元、3 元、100 元的奖券中(面值为整数),一次任意抽取 5 张奖券,共有种不同的优惠金额拓展延伸:(1)从 1,2,3,36 这 36 个整数中任取多少个整数,使得取出的这些整数之和共有 204 种不同的结果?(写出解答过程)(2)从 3,4,5,n + 3( n 为整数,且n2 )这(n +1) 个整数中任取a(1 a AB ,点C 在 EB上, ABC = EBF = 90 , AB = BE = 8 cm , BC = BF = 6 cm,延长 DC 交 E

    16、F 于点 M . 点 P 从点 A 出发,沿 AC 方向匀速运动,速度为 2 cm s ;同时,点Q 从点 M 出发,沿MF 方向匀速运动,速度为1 cm s ,过点 P 作GH AB 于点 H ,交CD 于点G 设运动时间为t (s)(0 t 5) 解答下列问题:(1) 当t 为何值时,点 M 在线段CQ 的垂直平分线上?(2) 连接 PQ ,作QN AF 于点 N ,当四边形 PQNH 为矩形时,求t 的值;(3) 连接QC ,QH ,设四边形QCGH 的面积为 S (cm2 ) ,求S 与t 的函数关系式;(4) 点 P 在运动过程中,是否存在某一时刻t ,使点 P 在AFE 的平分线上

    17、?若存在,求出t 的值;若不存在,请说明理由2020 年山东省青岛市初中学业水平考试数学答案解析1.【答案】A【解析】根据绝对值的概念可得4 的绝对值为 4. 2.【答案】D【解析】根据中心对称图形的概念结合各图形的特点求解 解:A.不是中心对称图形,不符合题意;A. 不是中心对称图形,不符合题意; C.不是中心对称图形,不符合题意; D.是中心对称图形,符合题意故选:D【考点】中心对称图形与轴对称图形的概念3. 【答案】B【解析】科学记数法的形式是: a 10n ,其中1 a 10 , n 为整数所以 a 2.2 , n 取决于原数小数点的移动位数与移动方向, n 是小数点的移动位数,往左移

    18、动, n 为正整数,往右移动, n 为负整数。本题小数点往右移动到 2 的后面,所以 n 8 .解:0.000 000 022 2.2 108 .故选 B.【考点】用科学记数法表示绝对值较小的数4. 【答案】A【解析】根据俯视图的定义即可求解 由图形可知,这个几何体的俯视图为故选 A【考点】俯视图的判断5. 【答案】D【解析】根据平移的规律找到 A 点平移后对应点,然后根据旋转的规律找到旋转后对应点 A ,即可得出 A的坐标解:如图所示: A 的坐标为 4,2,向上平移 1 个单位后为 4,3,再绕点 P 逆时针旋转 90后对应 A 点的坐标为1,4 故选:D【考点】根据平移变换和旋转变换作图

    19、6. 【答案】B【解析】先根据圆周角定理得到 BAD 90 ,再根据等弧所对的弦相等,得到 AB AD , ABD 45,最后根据同弧所对的圆周角等于圆心角的一半,得到 CAD 63 , BAG 27 ,即可求解解:BD 是O 的直径 BAD 90AB ADAB AD ABD 45 COD 126 CAD 1 COD 632 BAG 90 63 27 AGB 180 27 45 108故选:B【考点】圆周角定理和弧,弦及圆周角之间的关系7. 【答案】C【解析】先证明 AE AF ,再求解 AB , AC ,利用轴对称可得答案 解:由对折可得: AFO CFO,AF CF ,矩形 ABCD ,A

    20、DBC, B 90 , CFO AEO , AFO AEO ,AE AF 5 CF ,AF 2 BF 2BF 3 ,AB 4 ,BC=8AB2 BC 216 645AC 4,5由对折得: OA OC 1 AC 2.2故选 C【考点】矩形的性质,等腰三角形的判定,勾股定理的应用,轴对称的性质8. 【答案】B【解析】根据反比例函数图象和二次函数图象位置可得出: a0,b0,c0 ,由此可得出 c 0 ,一次函a数图象与 y 轴的交点在 y 轴的负半轴,对照四个选项即可解答 由二次函数图象可知: a0 ,对称轴 x b 0 ,2aa0,b0 ,由反比例函数图象知: c0 , c 0 ,一次函数图象与

    21、 y 轴的交点在 y 轴的负半轴,a对照四个选项,只有 B 选项符合一次函数 y c x b 的图象特征a故选:B.【考点】反比例函数的图象,二次函数的图象,一次函数的图象 二、9. 【答案】4343【解析】根据二次根式的混合运算计算即可.解: 12 4 3 3= 12 3=6 2=4 .故答案为 4.【考点】二次根式的混合运算10. 【答案】乙【解析】直接根据加权平均数比较即可解:甲得分: 9 1 7 1 5 1 203623乙得分: 8 1 6 1 7 1 433626 43 2063故答案为:乙【考点】加权平均数11. 【答案】127【解析】由OAB 的面积可得k 的值,再把 P a,7

    22、代入解析式即可得到答案解:OAB 的面积为 6 k 2 6 12 ,k0 ,k 12 ,y 12 ,x把 P a,7代入 y 12 ,x7 12 ,aa 12 .7经检验: a 12 符合题意7故答案为: 12 .7【考点】反比例函数的性质, k 的几何意义12. 【答案】2【解析】求出 的值,根据 的值判断即可 解:=4k 12 8k 4k 2 40 ,抛物线与 x 轴有 2 个交点 故答案为:24 55【考点】二次函数与坐标轴的交点问题13. 【答案】【解析】先根据正方形的性质与中位线定理得到CD,FG 的长,故可求出 AE、DF 的长,再等面积法即可得到 AH 的长,故可求解如图,过点

    23、A 作 AH DF 的延长线于点 H ,在正方形 ABCD 中,对角线 AC 与 BD 交于点O ,O 为 AC 中点F 点是 AE 中点,OF 是ACE 的中位线,CE 2OF 6G 点是 AD 的中点,FG 是ADE 的中位线,GF 1 DE 1 2CD CE DE 4 ,AD CD 4在RtADE 中, AD 4,DE 242 225AE 25DF 1 AE 2SAFD 1 AD GF 1 FD AH22即 1 4 1 1 4 5522AH 5 AH4 55点 A 到 DF 的距离为,故答案为: 4 5 5【考点】正方形内的线段求解314.【答案】 24 3 3【解析】如图,连接OM 、

    24、ON、OA ,设半圆分别交 BC 于点 E,F , 则 OM AB , ON AC , AMO ANO 90 , BAC 120 , MON 60 ,MN 的长为 ,60 OM ,180OM 3 ,在RtAMO 和RtANO 中,OM ON,OA OARtAMORtANO HL , AOM AON 1 MON 30 ,2AM OMtan 30 3 3 ,333S四边形AMON 2SAMO 2 12AM OM 3, MON 60 , MOE NOF 120 ,S S 112,扇形MOE扇形NOF3 S圆= 3 3 =3图中阴影面积为 S AOB S AOC S四边形AMON (S扇形MOE S扇

    25、形NOF )= 1 32= 24 3AB AC 333 3 , 33故答案为: 24 3 3 【考点】切线的性质定理,弧长公式, HL 定理,锐角的三角函数定义,扇形面积的计算等知识三、15.【答案】O 即为所求.【解析】解:根据题意可知,先作 A 的角平分线, 再作线段 BC 的垂直平分线相交于O ,即以O 点为圆心, OB 为半径,作圆O , 如下图所示:【考点】学生对确定圆心的作法四、16.【答案】(1)解:(1)原式= a b aba b a2 b2ababab=1a ba ba b;2x 3 5(2) 1 x 2 x3解得, x1 , 解得, x3 ,不等式组的解集是 x3 【解析】

    26、(1)先算括号里,再把除法转化为乘法,然后约分化简即可;具体解题过程参考答案(2)先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集具体解题过程参考答案【考点】分式的混合运算,一元一次不等式组的解法17.【答案】解:这个游戏对双方公平,理由如下: 如图,由树状图可知,所有可能发生的组合有 6 种,能配成紫色的组合有 3 种, P (紫色)= 3 = 1 ,62这个游戏对双方公平【解析】画出树状图,求出配成紫色的概率即可求解具体解题过程参考答案【考点】游戏公平性的判断18.【答案】过点 A 作 AE BD ,过点C 作CF AE ,在RtABE 中, BE t

    27、an 22 , BE AE tan 22 5 2 2 海里AE5BD 6 海里DE 6 2 4 海里四边形CFEDE 是矩形DE CF 4 海里CFAC CF 4 13 4.3 在RtACF 中, AC sin 67 ,sin 67123海里13答:此时观测塔 A 与渔船C 之间的距离是 4.3 海里【解析】具体解题过程参考答案【考点】解直角三角形的实际应用19.【答案】解:(1) 8 16% 50 人,50 4 8 10 12 16 人,补全频数直方图如下:(2)m= m 10 100% 20% ;50(3)“5080”分的人数已有 22 人,第 25 和 26 名的成绩分别是是 84 分,

    28、85 分,中位数是 84 85 =84.5 分;2(4)1200 12 16 =672 人50优秀人数是 672 人【解析】(1)先求出样本容量,再用用本容量减去已知各部分的频数,即可求出“901000”这组的频数, 从而补全频数直方图;具体解题过程参考答案(2) 用“7080”这组的频数除以样本容量即可;具体解题过程参考答案(3) 根据中位数的定义求解即可;具体解题过程参考答案(4) 用 1 200 乘以 80 分以上人数所占的比例即可具体解题过程参考答案【考点】频数分布直方图,扇形统计图的综合和利用统计图获取信息的能力20. 【答案】(1)解:设游泳池的蓄水量 y m3 与注水时间t h

    29、之间的函数关系式 y kt b ,将点 0,100 、2,380b 100代入得b 100解得380 2k bt 140所以函数关系式为 y 140t 100 .则同时打开甲、乙两个进水口的注水速度为140 m3 / h ;(2)设单独打开乙进水口注满游泳池所用时间为 xh ,则单独打开甲进水口注满游泳池所用时间为 4 xh3480 480 140 根据题意得: x4 x.3解得: x 6 ,经检验 x 6 是原方程的解。所以单独打开甲进水口注满游泳池所用时间为 4 x 8 h3【解析】(1)具体解题过程参考答案(2)具体解题过程参考答案【考点】一次函数的应用,分式方程的应用21. 【答案】(

    30、1)四边形 ABCD 是平行四边形,AD BC , ADB CBD又 ADB ADE 180 , CBF CBD 180 , ADE CBF在ADE 和CBF 中, AD BC , ADE CBF , DE BFADE CBF SAS(2)由(1) ADECBF 得: CE AF , AFB CEDAFCE ,即AF CE ,四边形 AFCE 是平行四边形.当 BD 平分 ABC 时, ABD CBD ,又ADCB ADB DB ADB ABD即 AD AB BC ,ABC 为等腰三角形.由等腰三角形得性质三线合一可知 AC EF ,平行四边形 AFCE 是菱形.【解析】(1)具体解题过程参考

    31、答案(2)具体解题过程参考答案【考点】特殊平行四边形的性质与判定22. 【答案】(1)由题可知 D2,0, E 0,1,代入到 y kx2 m k 0,可得解析式为 y 1 x2 1 .4(2) N 点与 D 点横坐标一致,将 x 1 代入抛物线解析式中,可得 N 点坐标为 3 ,即 MN 3 m ,则44S AD NM 2 3 3 , 则一扇窗户的价格为 3 50 75 元, 因此每个 B 型活动板的成本为FGMN422425 75 500 元.(3) 根据题意,可列方程为 w n 20 650 n ,化简为 w 2n 6002 20 000 ,又因为50010010一天最多 160 个,则

    32、20 650 n 160 ,得n620 ,又由a 20 ,在对称轴右侧 w 随 x 的增大而减小,10所以当n 620 时, w 最大,为 w 19 200 元.【解析】(1)具体解题过程参考答案(2) 具体解题过程参考答案(3) 具体解题过程参考答案【考点】二次函数的综合运用23. 【答案】探究一:(3)7(4) 2n 3探究二:(1)4(2) 3n 8探究三: 4n 15归纳探究: an a2 1问题解决:476拓展延伸:(1)7 或 29解: 设任取 x 个整数的和为 204 , 则所有取值的和的最小值为 1 2 3 . x= x 1 x2, 最大值为36 x 1 36 x 2.35 3

    33、6=36x 1 x 1 x 1,则1221 x 1 x 136x x 1 x1 x2 36x 1 204 ,则 x 29,x 7 .22(2) a2 na a 1【解析】探究一:(3) 根据下表可查出 7 种.所取的 2 个整数1,21,31,41,52,32,42,53,43,54,52 个整数之和3456567789出现结果为 3,4,5,6,7,8,9 共 7 种结果.(4) 由以上取两个整数最小值为1 2 3 ,最大值为 n n 1 2n 1 ,在最小值和最大值之间的数值 都有可能,所以为 2n 1 3 1 2n 3探究二:(1) 所出现情况的和的最小值为1 2 3 6 ,最大值为 2

    34、 3 4 9 ,则共可以出现情况为9 6 1 4 种.(2) 所出现情况的和的最小值为1 2 3 6 ,最大值为n 2 n 1 n 3n 3 ,则共可以出现情况为3n 3 6 1 3n 8 种探究三:所出现情况的和的最小值为1 2 3 4 10 ,最大值为n 3 n 2 n 1 n 4n 6 ,则共可以出现情况为 4n 6 10 1 4n 15 种.归纳探究:所出现情况的和的最小值为a 1 a1 2 3 . a ,最大值为2n a 1 n a 2 .n 1 n na 1 a 12a 1,则共有情况为1 a 1 a 1na a 1 a1 an a2 122问题解决:所出现情况的和的最小值为1 2

    35、 3 4 5 15 ,最大值为96 97 98 99 100 490 ,则共可以出现情况为490 15 1 476 .拓展延伸:(1) 具体解题过程参考答案( 2 ) 所 有 取 值 中 的 和 的 最 小 值 为5 a a3 4 5 . a 2 , 最 大 值 为2n 3 a 1 n 3 a 11.n 32n a 7 a 5 a a 1 a2 na a 1种.222n a 7a2则 共 可 以 出 现 情 况 共 有【考察能力】学生自主探究,自主归纳,一元二次方程的解法24. 【答案】(1)要使点 M 在线段CQ 的垂直平分线上,根据中垂线的性质,满足 MC MQ 即可;已知 MQ t .在

    36、MEC 和FEB 中,由 EC CM 可得: 2 = CM 相似 A 字模型EBBF86解得: CM 32MC MQt 32(2) 根据条件已知, PH AB , PHN 90 , QN AB , QNH 90 ,要使四边形 PQNH 为矩形,满足 PH QN 即可; 已知 AP 2t在APH 和ACB 中,由 AP PH 可得: 2t PH 相似 A 字模型解得: PH 6 t5ACBC106在FQN 和FEB 中,由 FQ ON 可得: FQ ON 相似 A 字模型FEEB若想要解出QN 的值,必须先求解 FQ .求解 FQ 108EC 2 CM 222 3 22 5在RtEMC 中, E

    37、CM 90 ,由勾股定理可得 EM 2FQ FE EM MQ 10 5 t 15 t22FQQN15 t将 FQ 带入108得, 2 QN ,108解得: QN 4 15 t 5 2PH QN6 t 4 15 t 55 2解得: t 3(3) 由图可知: SQCGH SQCGHN SQHN SBCGH SQNBC SQHN求解 SBCGH 四边形 BCGH 为矩形,面积为GH BH ,GH BC 6 ,其中 BH AB AH根据第二问中 AP 2t , PH 6 t ,可知 AH 8 t ,55BH AB AH 8 8 t5S 6 8 48 tBCGH85 t =485求解 SQNBC 四边形

    38、QNBC 为直角梯形,面积为 QN BCBN2同样根据第二问中 FQ 15 t , QN 4 15 t NF 3 15 t 25 2,可知5 2BN BF NF 6 3 15 3 3 t 5 2t = 254 15 t 63 3 t QN BC BN5 2 25 6SQNBC 2225t 2 3t 9求解 SQNH 三角形QNH 为直角三角形,面积为 QN NH2QN 4 15 t NH BH BN 8 8 t 3 3 t 19 t5 2,52524 15 t 19 t 5 2 223457S t 2 t QNHS2552 48 48 t 6 t2 3t 9 2 t2 34 t 57 16 t

    39、2 1 t 57QCGH5 25 552 2552 (4) 要使点 P 在 AFE 的平分线上,根据角平分线的性质,满足到角两边的距离相等即可;点 P 到 AB 的距离为 PH 6 t ,5过点C 作CI EF 于点 I ,AB EB , ABC EBF 90 , BC BF ,ABCEBF SAS , E BAC ,在ABC 和EIC 中, ECI ACB ,由三角形内角和可得: ABC EIC 90 8 字模型,点 P 到 EF 的距离为 PI PC CI求解 PC PC AC AP 10 2t求解CI 线段CI 为RtECM 斜边上的高,根据等面积法可得:EC CM EM CI2 35 CI22解得: CI 65,即2 2,22PI 10 2t 6 56 2t55PH PI ,即 6 t 56 2t55解得: t 72【解析】(1)具体解题过程参考答案(2) 具体解题过程参考答案(3) 具体解题过程参考答案(4) 具体解题过程参考答案【考点】直角三角形,锐角三角函数,垂直平分线,角平分线,矩形的性质,全等三角形的判定与性质, 多边形的面积等知识

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2020年山东省青岛中考数学试卷附答案解析版.docx
    链接地址:https://www.ketangku.com/wenku/file-588886.html
    相关资源 更多
  • 人教版(2019)必修第三册9-4 静电的防止与利用 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册9-4 静电的防止与利用 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册9-3 电场 电场强度 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册9-3 电场 电场强度 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册9-2 库仑定律 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册9-2 库仑定律 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册9-1 电荷 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册9-1 电荷 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册13-5 能量量子化 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册13-5 能量量子化 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册13-4 电磁波的发现及应用 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册13-4 电磁波的发现及应用 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册13-3 电磁感应现象及其应用 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册13-3 电磁感应现象及其应用 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册13-2 磁感应强度 磁通量 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册13-2 磁感应强度 磁通量 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册13-1 磁场 磁感线 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册13-1 磁场 磁感线 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册12-3 实验:电源电动势和内阻的测量 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册12-3 实验:电源电动势和内阻的测量 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册12-2 闭合电路的欧姆定律 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册12-2 闭合电路的欧姆定律 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册11-5 实验:练习使用多用电表 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册11-5 实验:练习使用多用电表 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册11-4 串联电路和并联电路 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册11-4 串联电路和并联电路 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册11-3 实验:导体电阻率的测量 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册11-3 实验:导体电阻率的测量 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册11-2 导体的电阻 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册11-2 导体的电阻 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册10-5 带电粒子在电场中的运动 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册10-5 带电粒子在电场中的运动 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册10-3 电势差与电场强度的关系 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册10-3 电势差与电场强度的关系 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册10-2 电势差 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册10-2 电势差 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修第三册10-1 电势能与电势 教师版-2021-2022学年高中物理合格性考试讲义.docx人教版(2019)必修第三册10-1 电势能与电势 教师版-2021-2022学年高中物理合格性考试讲义.docx
  • 人教版(2019)必修二 交通运输布局对区域发展的影响 教案.docx人教版(2019)必修二 交通运输布局对区域发展的影响 教案.docx
  • 人教版(2017)八年级上册历史 6.18从九一八事变到西安事变 同步测试.docx人教版(2017)八年级上册历史 6.18从九一八事变到西安事变 同步测试.docx
  • 人教版(2016)七年级上册历史 3.9秦统一中国 同步测试.docx人教版(2016)七年级上册历史 3.9秦统一中国 同步测试.docx
  • 人教版(2016)七年级上册历史 3.15两汉的科技和文化 同步测试.docx人教版(2016)七年级上册历史 3.15两汉的科技和文化 同步测试.docx
  • 人教版(2016)七年级上册历史 3.14沟通中外文明的丝绸之路 同步测试.docx人教版(2016)七年级上册历史 3.14沟通中外文明的丝绸之路 同步测试.docx
  • 人教版(2016)七年级上册历史 2.8百家争鸣 同步测试.docx人教版(2016)七年级上册历史 2.8百家争鸣 同步测试.docx
  • 人教版(2016)七年级上册历史 2.7战国时期的社会变化 同步测试.docx人教版(2016)七年级上册历史 2.7战国时期的社会变化 同步测试.docx
  • 人教版(2016)七年级上册历史 2.6动荡的春秋时期 同步测试.docx人教版(2016)七年级上册历史 2.6动荡的春秋时期 同步测试.docx
  • 人教版(2016)七年级上册历史 2.5青铜器与甲骨文 同步测试.docx人教版(2016)七年级上册历史 2.5青铜器与甲骨文 同步测试.docx
  • 人教版(2016)七年级上册历史 2.4早期国家的产生和发展 同步测试.docx人教版(2016)七年级上册历史 2.4早期国家的产生和发展 同步测试.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1