分享
分享赚钱 收藏 举报 版权申诉 / 5

类型2021届高考数学二轮复习 思想方法训练4 转化与化归思想 理(含解析).docx

  • 上传人:a****
  • 文档编号:612826
  • 上传时间:2025-12-11
  • 格式:DOCX
  • 页数:5
  • 大小:56.78KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021届高考数学二轮复习 思想方法训练4 转化与化归思想 理含解析 2021 高考 数学 二轮 复习 思想 方法 训练 转化 解析
    资源描述:

    1、思想方法训练4转化与化归思想思想方法训练第8页一、能力突破训练1.已知M=(x,y)|y=x+a,N=(x,y)|x2+y2=2,且MN=,则实数a的取值范围是()A.a2B.a2或a-2D.-2a2答案:C解析:MN=等价于方程组y=x+a,x2+y2=2无解.把y=x+a代入到方程x2+y2=2中,消去y,得到关于x的一元二次方程2x2+2ax+a2-2=0,由题易知一元二次方程无实根,即=(2a)2-42(a2-2)2或a-2.2.已知e1,e2是两个单位向量,且夹角为3,则e1+te2与te1+e2的数量积的最小值为()A.-32B.-36C.12D.33答案:A解析:(e1+te2)

    2、(te1+e2)=te12+(t2+1)e1e2+te22=t|e1|2+(t2+1)|e1|e2|cos3+t|e2|2=12t2+2t+12=12(t+2)2-32,当t=-2时,可得最小值为-32.3.设P为曲线C:y=x2+2x+3上的点,且曲线C在点P处切线倾斜角的取值范围为0,4,则点P横坐标的取值范围为()A.-1,-12B.-1,0C.0,1D.12,1答案:A解析:设P(x0,y0),倾斜角为,0tan1,y=f(x)=x2+2x+3,f(x)=2x+2,02x0+21,-1x0-12,故选A.4.(2018北京,理7)在平面直角坐标系中,记d为点P(cos ,sin )到直

    3、线x-my-2=0的距离.当,m变化时,d的最大值为()A.1B.2C.3D.4答案:C解析:设P(x,y),则x=cos,y=sin,x2+y2=1.即点P在单位圆上,点P到直线x-my-2=0的距离可转化为圆心(0,0)到直线x-my-2=0的距离加上(或减去)半径,所以距离最大为d=1+|-2|1+m2=1+21+m2.当m=0时,dmax=3.5.已知定义在实数集R上的函数f(x)满足f(1)=3,且f(x)的导数f(x)在R上恒有f(x)2(xR),则不等式f(x)2x+1的解集为()A.(1,+)B.(-,-1)C.(-1,1)D.(-,-1)(1,+)答案:A解析:设F(x)=f

    4、(x)-2x-1,则F(x)=f(x)-21时,F(x)0,不等式f(x)2x+1的解集为(1,+),故选A.6.已知函数f(x)=ax3+bsin x+4(a,bR),f(lg(log210)=5,则f(lg(lg 2)=()A.-5B.-1C.3D.4答案:C解析:因为lg(log210)+lg(lg2)=lg(log210lg2)=lglg10lg2lg2=lg1=0,所以lg(lg2)=-lg(log210).设lg(log210)=t,则lg(lg2)=-t.由条件可知f(t)=5,即f(t)=at3+bsint+4=5,所以at3+bsint=1,所以f(-t)=-at3-bsin

    5、t+4=-1+4=3.7.在平面直角坐标系xOy中,已知圆x2+y2=4上有且只有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是.答案:(-13,13)解析:若圆上有四个点到直线的距离为1,则需圆心(0,0)到直线的距离d满足0d1.d=|c|122+52=|c|13,0|c|0对任意实数x恒成立,则实数a的取值范围是.答案:(-2,6)解析:f(x)=2x-2-x为奇函数且在R上为增函数,所以f(x2-ax+a)+f(3)0f(x2-ax+a)-f(3)f(x2-ax+a)f(-3)x2-ax+a-3对任意实数x恒成立,即=a2-4(a+3)0-2a0).(1)求函数f(x

    6、)的单调递减区间;(2)设x0,2,f(x)的最小值是1-3,最大值是3,求实数m,n的值.解:(1)f(x)=m2sin2x+3mcos2x-32m+n=m2sin2x+32m(2cos2x-1)+n=m12sin2x+32cos2x+n=msin2x+3+n.m0,由2k+22x+32k+32,kZ,即k+12xk+712,kZ,可知函数f(x)的单调递减区间为k+12,k+712,kZ.(2)当x0,2时,2x+33,43,则-32sin2x+31.f(x)的最小值是1-3,最大值是3,f(x)的最大值为m+n=3,最小值为-32m+n=1-3,得m=2,n=1.10.已知函数f(x)=

    7、23x3-2ax2-3x.(1)当a=0时,求曲线y=f(x)在点(3,f(3)处的切线方程;(2)已知对一切x(0,+),af(x)+4a2xln x-3a-1恒成立,求实数a的取值范围.解:(1)由题意知当a=0时,f(x)=23x3-3x,所以f(x)=2x2-3.又f(3)=9,f(3)=15,所以曲线y=f(x)在点(3,f(3)处的切线方程为15x-y-36=0.(2)f(x)=2x2-4ax-3,则由题意得2ax2+1lnx,即alnx-12x2在x(0,+)时恒成立.设g(x)=lnx-12x2,则g(x)=3-2lnx2x3,当0x0;当xe32时,g(x)0,所以当x=e3

    8、2时,g(x)取得最大值,且g(x)max=14e3,故实数a的取值范围为14e3,+.二、思维提升训练11.已知抛物线y2=4x的焦点为F,点P(x,y)为抛物线上的动点,又点A(-1,0),则|PF|PA|的最小值是()A.12B.22C.32D.233答案:B解析:显然点A为准线与x轴的交点,如图,过点P作PB垂直准线于点B,则|PB|=|PF|.|PF|PA|=|PB|PA|=sinPAB.设过A的直线AC与抛物线切于点C,则00,b0)的左、右焦点,若双曲线右支上存在一点P,使(OP+OF2)F2P=0,O为坐标原点,且|PF1|=3|PF2|,则该双曲线的离心率为()A.3+1B.

    9、3+12C.6+2D.6+22答案:A解析:如图,取F2P的中点M,则OP+OF2=2OM.又由已知得2OMF2P=0,即OMF2P=0,OMF2P.又OM为F2F1P的中位线,F1PPF2.在PF1F2中,2a=|PF1|-|PF2|=(3-1)|PF2|,由勾股定理,得2c=2|PF2|.e=23-1=3+1.13.已知各项均为正数的数列an和bn满足an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列,且a1=1,a2=3,则数列an的通项公式为.答案:an=n2+n2解析:由题设可得2bn=an+an+1,an+1=bnbn+1,故an=bn-1bn,代入2bn=an+a

    10、n+1,得2bn=bnbn-1+bnbn+1,即2bn=bn-1+bn+1,则bn是等差数列.a1=1,a2=3,2b1=4,即b1=2.b2=a22b1=92.bn的公差d=b2-b1=322-2=22,bn=2+(n-1)22=2(n+1)2,即bn=n+12.bn+1=n+22.an+1=bnbn+1=(n+1)(n+2)2.an=n(n+1)2.14.已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2,若xR,f(x)0或g(x)0,则m的取值范围是.答案:(-4,0)解析:将问题转化为g(x)0的解集的补集是f(x)0的解集的子集求解.g(x)=2x-20,x1.又xR,

    11、f(x)0或g(x)0,1,+)是f(x)0的解集的子集.又由f(x)=m(x-2m)(x+m+3)0知m不可能大于等于0,因此m0.当m0时,f(x)0,若2m=-m-3,即m=-1,此时f(x)-m-3,即-1m0,此时f(x)2m或x-m-3,依题意2m1,即-1m0;若2m-m-3,即m-1,此时f(x)0的解集为x|x-m-3,依题意-m-3-4,即-4m-1.综上可知,满足条件的m的取值范围是-4mln(n+1)(nN*).答案:(1)解g(x)=1ef(x)-(x+1)=lnx-(x+1),g(x)=1x-1(x0).令g(x)0,解得0x1;令g(x)1.函数g(x)在区间(0,1)上单调递增,在区间(1,+)上单调递减,g(x)极大值=g(1)=-2.(2)证明由(1)知x=1是函数g(x)的极大值点,也是最大值点,g(x)g(1)=-2,即lnx-(x+1)-2lnxx-1(当且仅当x=1时等号成立).令t=x-1,得tln(t+1),取t=1n(nN*),则1nln1+1n=lnn+1n,1ln2,12ln32,13ln43,1nlnn+1n,叠加得1+12+13+1nln23243n+1n=ln(n+1).

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021届高考数学二轮复习 思想方法训练4 转化与化归思想 理(含解析).docx
    链接地址:https://www.ketangku.com/wenku/file-612826.html
    相关资源 更多
  • 小学二年级数学《角的初步认识》同步练习题标准卷.docx小学二年级数学《角的初步认识》同步练习题标准卷.docx
  • 2017-2018学年高中历史岳麓版必修一习题:第七单元第27课跨世纪的世界格局 WORD版含答案.PPT2017-2018学年高中历史岳麓版必修一习题:第七单元第27课跨世纪的世界格局 WORD版含答案.PPT
  • 2017-2018学年高中历史岳麓版必修3课件:第四单元 第19课 电影与电视 .ppt2017-2018学年高中历史岳麓版必修3课件:第四单元 第19课 电影与电视 .ppt
  • 小学二年级数学《角的初步认识》同步练习题有解析答案.docx小学二年级数学《角的初步认识》同步练习题有解析答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第四单元 第17课 诗歌、小说与戏剧 .ppt2017-2018学年高中历史岳麓版必修3课件:第四单元 第17课 诗歌、小说与戏剧 .ppt
  • 小学二年级数学《角的初步认识》同步练习题有精品答案.docx小学二年级数学《角的初步认识》同步练习题有精品答案.docx
  • 小学二年级数学《角的初步认识》同步练习题有答案解析.docx小学二年级数学《角的初步认识》同步练习题有答案解析.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第六单元 第26课 改变世界的高新科技 .ppt2017-2018学年高中历史岳麓版必修3课件:第六单元 第26课 改变世界的高新科技 .ppt
  • 小学二年级数学《角的初步认识》同步练习题有答案.docx小学二年级数学《角的初步认识》同步练习题有答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第六单元 第25课 现代科学革命 .ppt2017-2018学年高中历史岳麓版必修3课件:第六单元 第25课 现代科学革命 .ppt
  • 2017-2018学年高中历史岳麓版必修3课件:第五单元 第21课新文化运动 .ppt2017-2018学年高中历史岳麓版必修3课件:第五单元 第21课新文化运动 .ppt
  • 小学二年级数学《角的初步认识》同步练习题有完整答案.docx小学二年级数学《角的初步认识》同步练习题有完整答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第五单元 单元小结与测评 .ppt2017-2018学年高中历史岳麓版必修3课件:第五单元 单元小结与测评 .ppt
  • 小学二年级数学《角的初步认识》同步练习题最新.docx小学二年级数学《角的初步认识》同步练习题最新.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第二单元 第9课 诗歌与小说 .ppt2017-2018学年高中历史岳麓版必修3课件:第二单元 第9课 诗歌与小说 .ppt
  • 小学二年级数学《角的初步认识》同步练习题新版.docx小学二年级数学《角的初步认识》同步练习题新版.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第三单元 第15课近代科学技术革命 .ppt2017-2018学年高中历史岳麓版必修3课件:第三单元 第15课近代科学技术革命 .ppt
  • 小学二年级数学《角的初步认识》同步练习题推荐.docx小学二年级数学《角的初步认识》同步练习题推荐.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第一单元 第6课中国古代的科学技术 .ppt2017-2018学年高中历史岳麓版必修3课件:第一单元 第6课中国古代的科学技术 .ppt
  • 小学二年级数学《角的初步认识》同步练习题必考题.docx小学二年级数学《角的初步认识》同步练习题必考题.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第一单元 第3课汉代的思想大一统 .ppt2017-2018学年高中历史岳麓版必修3课件:第一单元 第3课汉代的思想大一统 .ppt
  • 小学二年级数学《角的初步认识》同步练习题往年题考.docx小学二年级数学《角的初步认识》同步练习题往年题考.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第6课 中国古代的科学技术 .ppt2017-2018学年高中历史岳麓版必修3课件:第6课 中国古代的科学技术 .ppt
  • 小学二年级数学《角的初步认识》同步练习题带解析答案.docx小学二年级数学《角的初步认识》同步练习题带解析答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第3课 汉代的思想大一统 .ppt2017-2018学年高中历史岳麓版必修3课件:第3课 汉代的思想大一统 .ppt
  • 小学二年级数学《角的初步认识》同步练习题带精品答案.docx小学二年级数学《角的初步认识》同步练习题带精品答案.docx
  • 2017-2018学年高中历史岳麓版必修3课件:第2课 战国时期的百家争鸣 .ppt2017-2018学年高中历史岳麓版必修3课件:第2课 战国时期的百家争鸣 .ppt
  • 2017-2018学年高中历史岳麓版必修3课件:第29课 百花齐放 百家争鸣 .ppt2017-2018学年高中历史岳麓版必修3课件:第29课 百花齐放 百家争鸣 .ppt
  • 小学二年级数学《角的初步认识》同步练习题带答案(黄金题型).docx小学二年级数学《角的初步认识》同步练习题带答案(黄金题型).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1