2021年高考数学经典例题 专题二 函数(含解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021年高考数学经典例题 专题二 函数含解析 2021 年高 数学 经典 例题 专题 函数 解析
- 资源描述:
-
1、专题二 函数一、单选题1在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )A10名B18名C24名D32名【答案】B【解析】算出第二天订单数,除以志愿者每天能完成的订单配货数即可.【详解】由题意,第二天新增订单数为,故至少需要志愿者名.故选:B2设函数,则( )A是奇函数,且在(0,
2、+)单调递增B是奇函数,且在(0,+)单调递减C是偶函数,且在(0,+)单调递增D是偶函数,且在(0,+)单调递减【答案】A【解析】根据函数的解析式可知函数的定义域为,利用定义可得出函数为奇函数,再根据函数的单调性法则,即可解出【详解】因为函数定义域为,其关于原点对称,而,所以函数为奇函数又因为函数在上单调递增,在上单调递增,而在上单调递减,在上单调递减,所以函数在上单调递增,在上单调递增故选:A3设,则( )ABCD【答案】B【解析】根据已知等式,利用指数对数运算性质即可得解【详解】由可得,所以,所以有,故选:B.4在同一直角坐标系中,函数且的图象可能是( )ABCD 【答案】D【解析】当时
3、,函数过定点且单调递减,则函数过定点且单调递增,函数过定点且单调递减,D选项符合;当时,函数过定点且单调递增,则函数过定点且单调递减,函数过定点且单调递增,各选项均不符合.综上,选D.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置(2)从函数的单调性,判断图象的变化趋势(3)从函数的奇偶性,判断图象的对称性(4)从函数的特征点,排除不合要求的图象利用上述方法排除、筛选选项5已知函数,则不等式的解集是( )ABCD【答案】D【解析】作出函数和的图象,观察图象可得结果.【详解】因为,所以等价于,在同一直角坐标系中作出和的图象如图:
4、两函数图象的交点坐标为,不等式的解为或.所以不等式的解集为:.故选:D.6设,则的大小关系为( )ABCD【答案】D【解析】利用指数函数与对数函数的性质,即可得出的大小关系.【详解】因为,所以.故选:D.【点睛】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:,当时,函数递增;当时,函数递减;(2)利用对数函数的单调性:,当时,函数递增;当时,函数递减;(3)借助于中间值,例如:0或1等.7函数在的图像大致为( )ABCD【答案】B【解析】设,则,所以是奇函
5、数,图象关于原点成中心对称,排除选项C又排除选项D;,排除选项A,故选B8已知函数在上单调递增,则的取值范围是( )ABCD【答案】D【解析】首先求出的定义域,然后求出的单调递增区间即可.【详解】由得或所以的定义域为因为在上单调递增所以在上单调递增所以故选:D【点睛】在求函数的单调区间时一定要先求函数的定义域.9若,则( )ABCD【答案】A【解析】将不等式变为,根据的单调性知,以此去判断各个选项中真数与的大小关系,进而得到结果.【详解】由得:,令,为上的增函数,为上的减函数,为上的增函数,则A正确,B错误;与的大小不确定,故CD无法确定.故选:A.10设,则( )ABCD【答案】A【解析】分
6、别将,改写为,再利用单调性比较即可.【详解】因为,所以.故选:A.11已知函数若g(x)存在2个零点,则a的取值范围是( )A1,0)B0,+)C1,+)D1,+)【答案】C【解析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程
7、有两个解,也就是函数有两个零点,此时满足,即,故选C.12基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0 =1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln20.69) ( )A1.2天B1.8天C2.5天D3.5天【答案】B【解析】根据题意可得,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需
8、要的时间为天,根据,解得即可得结果.【详解】因为,所以,所以,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为天,则,所以,所以,所以天.故选:B.13若定义在的奇函数f(x)在单调递减,且f(2)=0,则满足的x的取值范围是( )ABCD【答案】D【解析】首先根据函数奇偶性与单调性,得到函数在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在上的奇函数在上单调递减,且,所以在上也是单调递减,且,所以当时,当时,所以由可得:或或解得或,所以满足的的取值范围是,故选:D.14已知函数若函数恰有4个零点,则的取值范围是( )
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
