分享
分享赚钱 收藏 举报 版权申诉 / 22

类型2022-2023学年人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx

  • 上传人:a****
  • 文档编号:635211
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:22
  • 大小:363.89KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022-2023学年人教版九年级数学上册期中专项测评试题 卷解析卷 2022 2023 学年 人教版 九年级 数学 上册 期中 专项 测评 试题 解析
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中专项测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、关于函数,下列说法:函数的最小值为1;函数图象的对称轴为直线x3;

    2、当x0时,y随x的增大而增大;当x0时,y随x的增大而减小,其中正确的有()个A1B2C3D42、定义新运算,对于任意实数a,b满足,其中等式右边是通常的加法、减法、乘法运算,例如,若(k为实数) 是关于x的方程,则它的根的情况是()A有一个实根B有两个不相等的实数根C有两个相等的实数根D没有实数根3、如图,在方格纸上建立的平面直角坐标系中,将绕点按顺时针方向旋转90,得到,则点的坐标为()ABCD4、若P(x,3)与点Q(4,y)关于原点对称,则xy的值是()A12B12C64D645、在同一直角坐标系中,一次函数ykx+1与二次函数yx2+k的大致图象可以是()ABCD二、多选题(5小题,

    3、每小题4分,共计20分)1、对于二次函数y=2(x1)(x+3),下列说法不正确的是()A图象的开口向上B图象与y轴交点坐标是(0,6)C当x1时,y随x的增大而增大D图象的对称轴是直线x=12、在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象不可能是()AB 线 封 密 内 号学级年名姓 线 封 密 外 CD3、下面一元二次方程的解法中,不正确的是()A(x-3)(x-5)=102,x-3=10,x-5=2,x1=13,x2=7B(2-5x)+(5x-2)2=0,(5x-2)(5x-3)=0,x1=,x2=C(x+2)2+4x=0,x1=2,x2=-2Dx2=x两边同除以x,

    4、得x=14、二次函数y=a+ bx+c(a0)的部分图象如图,图象过点(1,0),对称轴为直线x=2,下列结论中正确的有() A抛物线与x轴的另一个交点是(5,0);B4a+c2b;C4a+b=0;D当x1时,y的值随x值的增大而增大5、如图,二次函败y=ax2+bx+c(a、b、c为常数,且a0)的图象与x轴的交点的横坐标分别为1、3,则下列结论中正确的有()Aabc0B2a+b=0C3a+2c0D对于任意x均有ax2a+bxb0第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,正方形ABCD的边长为6,点E在边CD上以点A为中心,把ADE顺时针旋转90至ABF的

    5、位置若DE2,则FE_2、要利用一面很长的围墙和100米长的隔离栏建三个如图所示的矩形羊圈,若计划建成的三个羊圈总面积为400平方米,则羊圈的边长AB为多少米?设AB=x米,根据题意可列出方程的为_3、把抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为_4、已知方程x23x10的根是x1和x2,则x1x2x1x2_5、二次函数的最大值是_ 线 封 密 内 号学级年名姓 线 封 密 外 四、解答题(5小题,每小题8分,共计40分)1、已知二次函数()(1)求二次函数图象的对称轴;(2)若该二次函数的图象开口向上,当时,函数图象的最高点为,最低点为,点的纵坐标为,求点和点

    6、的坐标;(3)在(2)的条件下,对直线下方二次函数图象上的一点,若,求点的坐标2、解关于y的方程:by21y2+23、在平面直角坐标系中,设二次函数(m是实数)(1)当时,若点在该函数图象上,求n的值(2)小明说二次函数图象的顶点在直线上,你认为他的说法对吗?为什么?(3)已知点,都在该二次函数图象上,求证:4、解方程(1)2x24x10 (2)3x(x1)22x5、某种病毒传播非常快,如果1人被感染,经过2轮感染后就会有81人被感染(1)每轮感染中平均1人会感染几人?(2)若病毒得不到有效控制,3轮感染后,被感染的人会不会超过700人?-参考答案-一、单选题1、B【解析】【分析】根据所给函数

    7、的顶点式得出函数图象的性质从而判断选项的正确性【详解】解:,该函数图象开口向上,有最小值1,故正确;函数图象的对称轴为直线,故错误;当x0时,y随x的增大而增大,故正确;当x3时,y随x的增大而减小,当3x0时,y随x的增大而增大,故错误故选:B【考点】本题考查二次函数的性质,解题的关键是能够根据函数解析式分析出函数图象的性质2、B【解析】【分析】将按照题中的新运算方法展开,可得,所以可得,化简得:,可得,即可得出答案.【详解】解:根据新运算法则可得:, 线 封 密 内 号学级年名姓 线 封 密 外 则即为,整理得:,则,可得:,;,方程有两个不相等的实数根;故答案选:B.【考点】本题考查新定

    8、义运算以及一元二次方程根的判别式.注意观察题干中新定义运算的计算方法,不能出错;在求一元二次方程根的判别式时,含有参数的一元二次方程要尤其注意各项系数的符号.3、A【解析】【分析】根据网格结构作出旋转后的图形,然后根据平面直角坐标系写出点B的坐标即可【详解】ABO如图所示,点B(2,1)故选A【考点】本题考查了坐标与图形变化,熟练掌握网格结构,作出图形是解题的关键4、A【解析】【分析】直接利用关于原点对称点的性质得出x,y的值,进而得出答案【详解】与点关于原点对称,故选A【考点】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键5、A【解析】【分析】二次函数图象与y轴交点的位

    9、置可确定k的正负,再利用一次函数图象与系数的关系可找出一次函数y=-kx+1经过的象限,对比后即可得出结论 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:由yx2+k可知抛物线的开口向上,故B不合题意;二次函数yx2+k与y轴交于负半轴,则k0,k0,一次函数ykx+1的图象经过经过第一、二、三象限,A选项符合题意,C、D不符合题意;故选:A【考点】本题考查了二次函数的图象、一次函数图象以及一次函数图象与系数的关系,根据二次函数的图象找出每个选项中k的正负是解题的关键二、多选题1、ACD【解析】【分析】将函数解析式变成顶点式,依照二次函数的性质对比四个选项即可得出结论【详解】解:A

    10、、y=-2(x-1)(x+3),a=-20,图象的开口向下,故本选项错误,符合题意;B、y=-2(x-1)(x+3)=-2x2-4x+6,当x=0时,y=6,即图象与y轴的交点坐标是(0,6),故本选项正确,不符合题意;C、y=-2(x-1)(x+3)=-2(x+1)2+8,即当x-1,y随x的增大而减少,故本选项错误,符合题意;D、y=-2(x-1)(x+3)=-2(x+1)2+8,即图象的对称轴是直线x=-1,故本选项错误,符合题意故选:ACD【点睛】本题考查了二次函数的性质,解题的关键是将二次函数关系式变为顶点式,联系二次函数性质对比四个选项即可2、ABD【解析】【分析】首先根据图形中给

    11、出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题【详解】A、对于直线y=bx+a来说,由图象可以判断,a0,b0;而对于抛物线来说,对称轴x= 0,应在y轴的左侧,图形错误,故符合题意B、对于直线y=bx+a来说,由图象可以判断,a0,b0;而对于抛物线来说,图象应开口向下,故不合题意,图形错误,故符合题意C、对于直线y=bx+a来说,由图象可以判断,a0,b0;而对于抛物线来说,图象开口向下,对称轴x=位于 y轴的右侧,图形正确,故不符合题意,D、对于直线y=bx+a来说,由图象可以判断,a0,b0;而对于

    12、抛物线来说,图象开口向下,a0,故不合题意,图形错误,故符合题意故选ABD【点睛】主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象 线 封 密 内 号学级年名姓 线 封 密 外 确定a、b的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答3、ACD【解析】【分析】各方程求出解,即可作出判断【详解】解:A、方程整理得:x2-8x-5=0,这里a=1,b=-8,c=-5,=64+20=84,故选项A符合题意;B、提取公因式得:(2-5x)(1+2-5x)=0,解得:x1=,x2=,故选项B不符合题

    13、意;C、方程整理得:x2+8x+4=0,解得:,故选项C符合题意;D、方程整理得:x2-x=0,即x(x-1)=0,解得:x1=0,x2=1,故选项D符合题意,故选:ACD【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键4、AC【解析】【分析】根据二次函数的性质,对称轴的性质,函数的增减性逐一判断即可【详解】设抛物线与x轴的另一个交点的横坐标为,二次函数y=a+ bx+c(a0)的图象过点(1,0),对称轴为直线x=2,4a+b=0,=5,抛物线与x轴的另一个交点是(5,0);故A,C两个选项正确;根据图像信息,得x=-2时,其函数值小于0,4a-2 b+c0

    14、即4a+c2b,故B选项错误;根据图像信息,当1x2时,y的值随x值的增大而增大,故D选项错误;故选AC【点睛】本题考查了二次函数的性质,对称轴的意义,抛物线与x轴的交点,函数的增减性,熟练掌握二次函数的性质是解题的关键5、BD【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】由抛物线开口方向得到a0,利用抛物线与x轴的交点问题和抛物线的对称性得到抛物线的对称轴为直线x=1,即-=1,所以b=-2a0,利用抛物线与y轴的交点位置得到c0,则可对A进行判断;利用b=-2a可对B进行判断;由于x=-1时,y=0,所以a-b+c=0,则c=-3a,3a+2c=-3a0,于是可对C进行判

    15、断;根据二次函数性质,x=1时,y的值最小,所以a+b+cax2+bx+c,于是可对D进行判断【详解】解:抛物线开口向上,a0,抛物线与x轴的交点的坐标分别为(-1,0),(3,0),抛物线的对称轴为直线x=1,即-=1,b=-2a0,抛物线与y轴的交点在x轴下方,c0,abc0,所以A错误;b=-2a,2a+b=0,所以B正确;x=-1时,y=0,a-b+c=0,即a+2a+c=0,c=-3a,3a+2c=3a-6a=-3a0,所以C错误;x=1时,y的值最小,对于任意x,a+b+cax2+bx+c,即ax2-a+bx-b0,所以D正确故选:BD【点睛】本题考查了二次函数与不等式(组):函数

    16、值y与某个数值m之间的不等关系,一般要转化成关于x的不等式,解不等式求得自变量x的取值范围;利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解三、填空题1、【解析】【分析】由旋转的性质可得BF=DE=2,D=ABF=90,在直角EFC中,由勾股定理可求解【详解】解:把ADE顺时针旋转90得ABF,BF=DE=2,D=ABF=90,ABC+ABF=180,点F,点B,点C共线,在直角EFC中,EC=6-2=4,CF=BC+BF=8根据勾股定理得:EF=,故答案为:【考点】本题考查了旋转的性质,正方形的性质,勾股定理,灵活运用

    17、这些性质解决问题是本题的关键2、x(100-4x)=400 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】由题意,得BC的长为(100-4x)米,根据矩形面积列方程即可.【详解】解:设AB为x米,则BC的长为(100-4x)米由题意,得x(100-4x)=400故答案为:x(100-4x)=400.【考点】本题主要考查了一元二次方程的实际问题,解决问题的关键是通过图形找到对应关系量,根据等量关系式列方程.3、【解析】【分析】直接根据“上加下减,左加右减”进行计算即可【详解】解:抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为:,即:故答案为:【考点】本

    18、题主要考查函数图像的平移,熟记函数图像的平移方式“上加下减,左加右减”是解题的关键4、2【解析】【分析】根据根与系数的关系可得出x1+x23、x1x21,将其代入x1+x2x1x2中即可求出结论【详解】解:方程x23x10的两个实数根为x1、x2,x1x23、x1 x21,x1x2x1x2312,故答案为:2【考点】本题考查了根与系数的关系,一元二次方程ax2+bx+c0(a0)的根与系数的关系为:x1+x2,x1x25、8【解析】【分析】二次函数的顶点式在x=h时有最值,a0时有最小值,a0时有最大值,题中函数 ,故其在时有最大值.【详解】解:,有最大值,当时,有最大值8故答案为8【考点】

    19、线 封 密 内 号学级年名姓 线 封 密 外 本题考查了二次函数顶点式求最值,熟练掌握二次函数的表达式及最值的确定方法是解题的关键.四、解答题1、(1)直线x=1;(2);(3)或【解析】【分析】(1)利用对称轴公式计算即可;(2)构建方程求出a的值即可解决问题;(3)先求出直线MN的解析式,然后设点的坐标为,过点作轴的垂线交直线于点,得到PQ的长度,根据三角形的面积公式,即可求出答案【详解】解:(1)二次函数(),该二次函数图象的对称轴是直线:;(2)该二次函数的图象开口向上,对称轴为直线,当时,取得最大值,即,得:,该二次函数的表达式为:,即点的坐标为(3)设直线的解析式为,则,解得:,设

    20、直线的解析式为:,设点的坐标为,过点作轴的垂线交直线于点,如图则点的坐标是,解得:,点的坐标是或【点睛】本题考查二次函数的性质,一次函数的性质,函数的最值问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型2、当b1时,原方程的解为y;当b1时,原方程无实数解【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】把b看做常数根据解方程的步骤:先移项,再合并同类项,系数化为1,即可得出答案【详解】解:移项得:by2y22+1,合并同类项得:(b1)y23,当b1时,原方程无解;当b1时,原方程的解为y;当b1时,原方程无实数解【点睛】此题主要考查一元二次方程的求解,解题的

    21、关键是根据题意分类讨论3、 (1)-7(2)对,理由见解析(3)见解析【解析】【分析】(1)把m=2,点A(8,n)代入解析式即可求解;(2)由抛物线解析式,得顶点是,把x2m代入,求出y值与3-m比较,若相等则即可判断小明说法正确,否则说法错误;(3)由点P(a+1,c),Q(4m-5+a,c)的纵坐标相同,即可求得对称轴为直线x=a+2m-2,即可得出a+2m-2=2m,求得a=2,得到P(3,c),代入解析式即可得到 ,根据二次函数的性质即可证得结论(1)解:当m2时,A(8,n)在函数图象上,(2)解:由题意得,顶点是当x2m时,顶点在直线上(3)证明:P(a+1,c),Q(4m-5+

    22、a,c)都在二次函数的图象上对称轴是直线a+2m-22m ,a2,P(3,c),把P(3,c)代入抛物线解析式,得,-20,c有最大值为,c【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,二次函数的性质,熟练掌握二次函数的性质是解题的关键4、 (1) x11+ ,x21- ;(2) ,【解析】【分析】(1)用配方法求解即可;(2)先移项,然后用因式分解法求解即可【详解】(1)2x24x10,移项得:2x24x1,二次项系数化为1得:,配方得:,(x1)2,即x1,故原方程的解是:x11+ ,x21- ;(2)3x(x1)2

    23、2x,移项得:3x(x1)+2x20,即3x(x1)+2(x1)0,分解因式得:(x1)(3x+2)0,即3x+20,x10,解得: ,【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键5、 (1)8人(2)会【解析】【分析】(1)设每轮感染中平均一个人会感染x个人,根据一个人被感染经过两轮感染后就会有81个人被感染,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据3轮感染后被感染的人数=2轮感染后被感染的人数(1+8),即可求出3轮感染后被感染的人数,再将其与700进行比较后即可得出结论(1)设每轮感染中平均1人会感染x人,依题意,得1xx(1x)81,解得x18,x210(不合题意,舍去)答:每轮感染中平均1人会感染8人(2)81(18)729(人),729700答:若病毒得不到有效控制,3轮感染后,被感染的人会超过700人【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年人教版九年级数学上册期中专项测评试题 卷(Ⅰ)(解析卷).docx
    链接地址:https://www.ketangku.com/wenku/file-635211.html
    相关资源 更多
  • 专题 01中国文化读写专项:中国概况 中国简介- 2024年高考英语常考中国文化读写专练 素材积累.docx专题 01中国文化读写专项:中国概况 中国简介- 2024年高考英语常考中国文化读写专练 素材积累.docx
  • 专题 01 英美文化阅读理解专项:移民之国 早期美国 印第安人-2024年高考英语常考英美文化阅读专练 素材积累.docx专题 01 英美文化阅读理解专项:移民之国 早期美国 印第安人-2024年高考英语常考英美文化阅读专练 素材积累.docx
  • 专题 01 生物多样性保护--2023年高考英语外刊时文精读精练.docx专题 01 生物多样性保护--2023年高考英语外刊时文精读精练.docx
  • 专题 01 推断题(下)-【尖子生训练营】2022年初中化学尖子生选拔专题训练(解析版).docx专题 01 推断题(下)-【尖子生训练营】2022年初中化学尖子生选拔专题训练(解析版).docx
  • 专题 01 推断题(下)-【尖子生训练营】2022年初中化学尖子生选拔专题训练(原卷版).docx专题 01 推断题(下)-【尖子生训练营】2022年初中化学尖子生选拔专题训练(原卷版).docx
  • 专题 01 单项选择【考题猜想 】 -2023-2024学年七年级英语上学期期末考末大串讲(人教版)原卷版.docx专题 01 单项选择【考题猜想 】 -2023-2024学年七年级英语上学期期末考末大串讲(人教版)原卷版.docx
  • 专题 01申请信 (应用文写作)-2024年新高考英语一轮复习练小题刷大题提能力(解析版).docx专题 01申请信 (应用文写作)-2024年新高考英语一轮复习练小题刷大题提能力(解析版).docx
  • 专题 01构词法之组合练-2024年新高考英语一轮复习练小题刷大题提能力(原卷版).docx专题 01构词法之组合练-2024年新高考英语一轮复习练小题刷大题提能力(原卷版).docx
  • 专题牛一、摩擦力与二力平衡综合问题必刷题-2022-2023学年八年级下册物理《考点•题型 •技巧》精讲与精练高分突破专题系列(人教版).docx专题牛一、摩擦力与二力平衡综合问题必刷题-2022-2023学年八年级下册物理《考点•题型 •技巧》精讲与精练高分突破专题系列(人教版).docx
  • 专项集训8力学实验题-备战2022年中考物理热门专项集训.docx专项集训8力学实验题-备战2022年中考物理热门专项集训.docx
  • 专项讲解虚拟语气.docx专项讲解虚拟语气.docx
  • 专项训练(四)有关气体制取的题型(解析版).docx专项训练(四)有关气体制取的题型(解析版).docx
  • 专项训练(五)绿色植物的三大作用(原卷版).docx专项训练(五)绿色植物的三大作用(原卷版).docx
  • 专项训练(二)有关化学式的计算题型(原卷版).docx专项训练(二)有关化学式的计算题型(原卷版).docx
  • 专项训练(三)有关化学方程式的计算题型(原卷版).docx专项训练(三)有关化学方程式的计算题型(原卷版).docx
  • 专项训练(一) 电磁继电器 电磁铁(解析版).docx专项训练(一) 电磁继电器 电磁铁(解析版).docx
  • 专项训练(一) 电磁继电器 电磁铁(原卷版).docx专项训练(一) 电磁继电器 电磁铁(原卷版).docx
  • 专项训练教师版.docx专项训练教师版.docx
  • 专项训练学生版.docx专项训练学生版.docx
  • 专项训练四 立体几何(考点2 利用空间向量求空间角)(原卷版).docx专项训练四 立体几何(考点2 利用空间向量求空间角)(原卷版).docx
  • 专项训练五 解析几何(考点3 解析几何中的定点、定值问题)(原卷版).docx专项训练五 解析几何(考点3 解析几何中的定点、定值问题)(原卷版).docx
  • 专项训练五 解析几何(考点1 解析几何中的轨迹方程的求法)(解析版).docx专项训练五 解析几何(考点1 解析几何中的轨迹方程的求法)(解析版).docx
  • 专项训练五 解析几何(考点1 解析几何中的轨迹方程的求法)(原卷版).docx专项训练五 解析几何(考点1 解析几何中的轨迹方程的求法)(原卷版).docx
  • 专项训练三 概率与统计(考点4 统计与概率的综合应用)(解析版).docx专项训练三 概率与统计(考点4 统计与概率的综合应用)(解析版).docx
  • 专项训练三 概率与统计(考点4 统计与概率的综合应用)(原卷版).docx专项训练三 概率与统计(考点4 统计与概率的综合应用)(原卷版).docx
  • 专项训练4 化学用语.docx专项训练4 化学用语.docx
  • 专项训练3酸 碱 盐综合训练.docx专项训练3酸 碱 盐综合训练.docx
  • 专项训练3 化合价与化学式.docx专项训练3 化合价与化学式.docx
  • 专项训练2金属活动性顺序及应用.docx专项训练2金属活动性顺序及应用.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1