2022-2023学年度人教版九年级数学上册第二十四章圆章节测试试卷(含答案详解版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 2023 学年 度人 九年级 数学 上册 第二 十四 章节 测试 试卷 答案 详解
- 资源描述:
-
1、人教版九年级数学上册第二十四章圆章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知圆的半径为扇形的圆心角为,则扇形的面积为()ABCD2、如图,是的直径,点C为圆上一点,的平分线交于点D,则的直
2、径为()ABC1D23、已知点在上则下列命题为真命题的是()A若半径平分弦则四边形是平行四边形B若四边形是平行四边形则C若则弦平分半径D若弦平分半径则半径平分弦4、如图,已知O的半径为4,M是O内一点,且OM2,则过点M的所有弦中,弦长是整数的共有()A1条B2条C3条D4条5、如图,O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与O的位置关系是()A在O内B在O上C在O外D以上都有可能6、如图,AB是O的直径,点E是AB上一点,过点E作CDAB,交O于点C,D,以下结论正确的是()A若O的半径是2,点E是OB的中点,则CDB若CD,则O的半径是1C若C
3、AB30,则四边形OCBD是菱形D若四边形OCBD是平行四边形,则CAB607、如图,点在上,则()ABCD8、如图,O是RtABC的外接圆,ACB90,过点C作O的切线,交AB的延长线于点D设A,D,则()AB+90C2+90D+2909、如图,在ABC中, AG平分CAB,使用尺规作射线CD,与AG交于点E,下列判断正确的是()AAG平分CDBC点E是ABC的内心D点E到点A,B,C的距离相等10、已知:如图,PA,PB分别与O相切于A,B点,C为O上一点,ACB65,则APB等于()A65B50C45D40第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知圆锥的
4、底面半径为,侧面展开图的圆心角是180,则圆锥的高是_2、如图,在中,ABC=90,A=58,AC=18,点D为边AC的中点以点B为圆心,BD为半径画圆弧,交边BC于点E,则图中阴影部分图形的面积为_a3、如图,将三角形AOC绕点O顺时针旋转120得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_(结果保留)4、如图,已知是的直径,且,弦,点是弧上的点,连接、,若,则的长为_5、如图,以为直径作半圆,圆心为点;以点为圆心,为半径作,过点作的平行线交两弧于点、,则阴影部分的面积是_.三、解答题(5小题,每小题10分,共计50分)1、如图,是的直径,点是上一点,点是延长线上一点,是
5、的弦,(1)求证:直线是的切线;(2)若,求的半径;(3)若于点,点为上一点,连接,请找出,之间的关系,并证明2、如图,AD、BC是O的两条弦,且ABCD,求证:ADBC3、如图,点C是射线上的动点,四边形是矩形,对角线交于点O,的平分线交边于点P,交射线于点F,点E在线段上(不与点P重合),连接,若(1)证明:(2)点Q在线段上,连接、,当时,是否存在的情形?请说明理由4、如图,两个圆都以点O为圆心,大圆的弦交小圆于两点求证: 5、如图,的两条弦(AB不是直径),点E为AB中点,连接EC,ED(1)直线EO与AB垂直吗?请说明理由;(2)求证:-参考答案-一、单选题1、B【解析】【分析】扇形
6、面积公式为: 利用公式直接计算即可得到答案【详解】解: 圆的半径为扇形的圆心角为, 故选:【考点】本题考查的是扇形的面积的计算,掌握扇形的面积的计算公式是解题的关键2、B【解析】【分析】过D作DEAB垂足为E,先利用圆周角的性质和角平分线的性质得到DE=DC=1,再说明RtDEBRtDCB得到BE=BC,然后再利用勾股定理求得AE,设BE=BC=x,AB=AE+BE=x+,最后根据勾股定理列式求出x,进而求得AB【详解】解:如图:过D作DEAB,垂足为EAB是直径ACB=90ABC的角平分线BDDE=DC=1在RtDEB和RtDCB中DE=DC、BD=BDRtDEBRtDCB(HL)BE=BC
7、在RtADE中,AD=AC-DC=3-1=2AE=设BE=BC=x,AB=AE+BE=x+在RtABC中,AB2=AC2+BC2则(x+)2=32+x2,解得x=AB=+=2故填:2【考点】本题主要考查了圆周角定理、角平分线的性质以及勾股定理等知识点,灵活应用相关知识成为解答本题的关键3、B【解析】【分析】根据圆的有关性质、垂径定理及其推论、特殊平行四边形的判定与性质依次对各项判断即可【详解】A半径平分弦,OBAC,AB=BC,不能判断四边形OABC是平行四边形,假命题;B四边形是平行四边形,且OA=OC,四边形是菱形,OA=AB=OB,OABC,OAB是等边三角形,OAB=60,ABC=12
8、0,真命题;C,AOC=120,不能判断出弦平分半径,假命题;D只有当弦垂直平分半径时,半径平分弦,所以是假命题,故选:B【考点】本题主要考查命题与证明,涉及垂径定理及其推论、菱形的判定与性质、等边三角形的判定与性质等知识,解答的关键是会利用所学的知识进行推理证明命题的真假4、C【解析】【分析】过点M作ABOM交O于点A、B,根据勾股定理求出AM,根据垂径定理求出AB,进而得到答案【详解】解:过点M作ABOM交O于点A、B,连接OA,则AMBMAB,在RtAOM中,AM,AB2AM,则过点M的所有弦8,则弦长是整数的共有长度为7的两条,长度为8的一条,共三条,故选:C【考点】本题考查了垂径定理
9、,勾股定理,掌握垂直于选的直径平分这条弦,并平分弦所对的两条弧是解题关键5、A【解析】【详解】如图,连接OA,则在直角OMA中,根据勾股定理得到OA=点A与O的位置关系是:点A在O内 故选A 6、C【解析】【分析】根据垂径定理,解直角三角形知识,一一求解判断即可【详解】解:A、OCOB2,点E是OB的中点,OE1,CDAB,CEO90,CD2CE, ,本选项错误不符合题意;B、根据,缺少条件,无法得出半径是1,本选项错误,不符合题意;C、A30,COB60,OCOB,COB是等边三角形,BCOC,CDAB,CEDE,BCBD,OCODBCBD,四边形OCBD是菱形;故本选项正确本选项符合题意D
10、、四边形OCBD是平行四边形,OC=OD,所以四边形OCBD是菱形OCBC,OCOB,OCOBBC,BOC60,故本选项错误不符合题意故选:C【考点】本题考查了圆周角定理,垂径定理,菱形的判定和性质,等边三角形的判定和性质,正确的理解题意是解题的关键7、D【解析】【分析】先证明再利用等弧的性质及圆周角定理可得答案【详解】解: 点在上, 故选:【考点】本题考查的两条弧,两个圆心角,两条弦之间的关系,圆周角定理,等弧的概念与性质,掌握同弧或等弧的概念与性质是解题的关键8、C【解析】【分析】连接OC, 由BOC是AOC的外角,可得BOC2A2,由CD是O的切线,可求OCD90,可得D902即可【详解
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-641532.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
