分享
分享赚钱 收藏 举报 版权申诉 / 24

类型2022-2023学年度北师大版八年级数学上册第一章勾股定理专项测评试卷(解析版).docx

  • 上传人:a****
  • 文档编号:643310
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:24
  • 大小:411.48KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022 2023 学年度 北师大 八年 级数 上册 第一章 勾股定理 专项 测评 试卷 解析
    资源描述:

    1、北师大版八年级数学上册第一章勾股定理专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列四组数中,是勾股数的是()A5,12,13B4,5,6C2,3,4D1,2、如图是由四个全等的直角三角形和一

    2、个小正方形拼成的一个大正方形,设直角三角形的两直角边分别是a、b,且,大正方形的面积是9,则小正方形的面积是()A3B4C5D63、如图,嘉嘉在A时测得一棵4米高的树的影长为,若A时和B时两次日照的光线互相垂直,则B时的影长为()ABCD4、如图,以RtABC的两直角边为边向外作正方形,其面积分别为S1,S2,若S18cm2,S217cm2,则斜边AB的长是()A3cmB6cmC4cmD5cm5、两只小鼹鼠在地下打洞,一只朝正北方向挖,每分钟挖8cm,另一只朝正东方向挖,每分钟挖6cm,10分钟之后两只小鼹鼠相距()A50cmB120cmC140cmD100cm6、如图,三角形纸片ABC,AB

    3、=AC,BAC=90,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,折痕现交于点F,已知EF=,则BC的长是()AB3C3D37、下列各组数据为三角形的三边,能构成直角三角形的是()A4,8,7B2,2,2C2,2,4D13,12,58、在ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC等于()A10B8C6或10D8或109、有一个直角三角形的两边长分别为3和4,则第三边的长为()A5BCD5或10、如图,在ABC中,AB6,AC9,ADBC于D,M为AD上任一点,则MC2MB2等于()A29B32C36D45第卷(非选择题 70分)二、填空题(5小题,每小题4分,

    4、共计20分)1、如图,在四边形ABCD中,那么四边形ABCD的面积是_2、如图,RtABC中,C=90,在ABC外取点D,E,使AD=AB,AE=AC,且+B,连结DE若AB4,AC3,则DE_3、我国古代数学著作九章算术中记载了一个问题:“今有池方一丈,葭(ji)生其中,出水一尺引葭赴岸(丈、尺是长度单位,1丈10尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,它高出水面1尺(即BC1尺)如果把这根芦苇拉向水池一边的中点,它的顶端B恰好到达池边的水面D处,问水的深度是多少?则水深DE为_尺4、如图所示,数轴上点A所表示的数为_5、如图,圆柱形无盖玻璃容器,高18cm,底面周长为60

    5、cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口1cm的F处有一苍蝇,则急于捕获苍蝇充饥的蜘蛛所走的最短路线的长度为_cm(容器壁厚度忽略不计)三、解答题(5小题,每小题10分,共计50分)1、已知:在中,点在直线上,点在同一条直线上,且,【问题初探】(1)如图1,若平分,求证:请依据以下的简易思维框图,写出完整的证明过程【变式再探】(2)如图2,若平分的外角,交的延长线于点,问:和的数量关系发生改变了吗?若改变,请写出正确的结论,并证明;若不改变,请说明理由【拓展运用】(3)如图3,在的条件下若,求的长度2、如图所示,ABC的两条高AD,BE相交于点F,AC=

    6、BC(1)求证:ADCBEC(2)若CD=1,BE=2,求线段AC的长.3、如图,烟台市正政府决定在相距50km的A、B两村之间的公路旁E点,修建一个大樱桃批发市场,且使C、D两村到E点的距离相等,已知DAAB于A,CBAB于B,DA30km,CB20km,那么大樱桃批发市场E应建什么位置才能符合要求?4、我国古代的数学名著九章算术中记载“今有竹高一丈八,末折抵地,去本6尺.问:折者高几何?”译文:一根竹子,原高一丈八,虫伤有病,一阵风将竹子折断,其竹梢恰好着地,着地处离原竹子根部6尺远问:折处离地还有多高的竹子?(1丈=10尺)5、在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,

    7、其中ABAC,由于种种原因,由C到A的路现在已经不通了,某村为方便村民取水决定在河边新建一个取水点H(A,H,B在一条直线上),并新修一条路CH,测得CB3千米,CH2.4千米,HB1.8千米(1)问CH是不是从村庄C到河边的最近路,请通过计算加以说明;(2)求原来的路线AC的长-参考答案-一、单选题1、A【解析】【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方【详解】解:A、52+122132,都是正整数,是勾股数,故此选项符合题意;B、42+5262,不是勾股数,故此选项不合题意;C、22+3242,不是勾股数,故此选项不合题意;D、,不是

    8、正整数,不是勾股数,故此选项不合题意;故选:A【考点】此题主要考查了勾股数,解答此题要用到勾股数组的定义,如果a,b,c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数2、A【解析】【分析】观察图形可知,小正方形的面积=大正方形的面积4个直角三角形的面积,利用已知(a+b)2=15,大正方形的面积为9,可以得出直角三角形的面积,进而求出答案【详解】解:(a+b)2=15,a2+2ab+b2=15,大正方形的面积为:a2+b2=9,2ab=159=6,即ab=3,直角三角形的面积为:,小正方形的面积为:,故选:A【考点】此题主要考查了完全平方公式及勾股定理的应用,熟练应用完全平方

    9、公式及勾股定理是解题关键3、A【解析】【分析】根据勾股定理,求出FC=,令DE=x,在Rt中,EC2=,在Rt中,EC2=,代入求解即可【详解】解:由题意,得ECF=CDF=CDE=90,CD=4m,=,由勾股定理,得FC=,EC2=,EC2=,=,令DE=x,则EF=x+8,整理,得16x=32,解得x=2故选:A【考点】本题考查利用勾股定理求线段长,拓展一元一次方程,正确的运算能力是解决问题的关键4、D【解析】【分析】根据正方形的面积可以得到BC28,AC217,然后根据勾股定理即可得到AB2,从而可以求得AB的值【详解】解:S18cm2,S217cm2,BC28,AC217,ACB90,

    10、AB2BC2AC2,即AB281725,AB5cm,故选:D【考点】本题考查正方形的面积、勾股定理,解答本题的关键是明确正方形的面积是边长的平方5、D【解析】【分析】画出图形,利用勾股定理即可求解【详解】解:如图,cm,cm,在中,cm,故选:D【考点】本题考查了勾股定理的应用,理解题意,画出图形是解题的关键6、B【解析】【分析】折叠的性质主要有:1.重叠部分全等;2.折痕是对称轴,对称点的连线被对称轴垂直平分. 由折叠的性质可知,所以可求出AFB=90,再直角三角形的性质可知,所以,的长可求,再利用勾股定理即可求出BC的长【详解】解: ABAC,,故选B.【考点】本题考查了折叠的性质、等腰直

    11、角三角形的判断和性质以及勾股定理的运用,求出AFB=90是解题的关键7、D【解析】【分析】根据勾股定理的逆定理,看较小的两边的平方和是否等于最大的边的平方即可进行判断.【详解】A、42+7282,故不能构成直角三角形;B、22+2222,故不能构成直角三角形;C、2+2=4,故不能构成三角形,不能构成直角三角形;D、52+122=132,故能构成直角三角形,故选D【考点】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形8、C【解析】【详解】分两种情况:在图中,由勾股定理,得;BCBDCD8210.在图中,由勾股定理,得;BCBDCD8

    12、26.故选C.9、D【解析】【分析】分4是直角边、4是斜边两种情况考虑,再根据勾股定理计算即可【详解】解:当4是直角边时,斜边=5;当4是斜边时,另一条直角边=;故选:D【考点】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c210、D【解析】【分析】在RtABD及RtADC中可分别表示出BD2及CD2,在RtBDM及RtCDM中分别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结果【详解】解:在RtABD和RtADC中,BD2AB2AD2,CD2AC2AD2,在RtBDM和RtCDM中,BM2BD2MD2AB2AD2MD2,

    13、MC2CD2MD2AC2AD2MD2,MC2MB2(AC2AD2MD2)(AB2AD2MD2)AC2AB245故选:D【考点】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC2和MB2是本题的难点,重点还是在于勾股定理的熟练掌握二、填空题1、+24【解析】【分析】连结BD,可求出BD=6,再根据勾股定理逆定理,得出BDC是直角三角形,两个三角形面积相加即可【详解】解:连结BD,BD=6,BD2=36,CD2=64,BC2=100,BD2+CD2=BC2,BDC=90,SABD=,SBDC=,四边形ABCD的面积是= SABD+ SBDC

    14、=+24故答案为:+24【考点】本题考查勾股定理以及逆定理,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型2、5【解析】【分析】根据角度转换,得到三角形ADE是直角三角形,然后运用勾股定理计算出DE的长.【详解】B+C+BAC=180,C=90,B+BAC=90.+B,DAE=+BAC=B+BAC=90.ADE是直角三角形.DE=5.【考点】本题主要考查到运用勾股定理求长度,说明三角形ADE是直角三角形是解题的关键.3、12【解析】【分析】设水深为h尺,则芦苇长为(h + 1)尺,根据勾股定理列方程,解出h即可【详解】设水深为h尺,则芦苇长为(h+ 1)尺,根据勾股

    15、定理,得(h+ 1)2-h2=52解得h = 12,水深为12尺,故答案是: 12【考点】本题主要考查勾股定理的应用,熟练根据勾股定理列出方程是解题的关键4、【解析】【分析】根据数轴上点的特点和相关线段的长,结合勾股定理求出斜边长,即可求出-1和A之间的线段的长,即可知A所表示的数【详解】图中直角三角形的两直角边为1,2,所以斜边长为,那么-1和A之间的距离为,那么数轴上点A所表示的数为:故答案为:【考点】本题考查实数与数轴之间的对应关系以及勾股定理,利用勾股定理求出直角三角形的斜边的长是解答本题的关键5、34【解析】【分析】首先展开圆柱的侧面,即是矩形,接下来根据两点之间线段最短,可知CF的

    16、长即为所求;然后结合已知条件求出DF与CD的长,再利用勾股定理进行计算即可.【详解】如图为圆柱形玻璃容器的侧面展开图,线段CF是蜘蛛由C到F的最短路程.根据题意,可知DF=18-1-1=16(cm),CD(cm),(cm),即蜘蛛所走的最短路线的长度是34cm.故答案为34.【考点】此题是有关最短路径的问题,关键在于把立体图形展开成平面图形,找出最短路径;三、解答题1、(1)见解析(2);理由见解析(3)【解析】【分析】(1)根据ASA证明得BE=BC,得,进一步可得结论;(2)根据ASA证明得BE=BC,得;(3)连结,分别求出AEB=ADE=ACB=225,再证明AE=CD,ADC=90,

    17、由勾股定理可得AC,由EC=EA+AC可得结论【详解】解:(1)证明平分,在和中, ;理由:平分,在和中,连结,且,由得,【考点】此题主要考查了全等三角形的判定与性质,勾股定理等知识,连接AD是解答此题的关键2、 (1)见解析(2)【解析】【分析】(1)由ADBC,BEAC得BEC=ADC=90,可证DAC=CBE,根据AAS可证ADCBEC;(2)由ADCBEC,得CD=CE=1,根据勾股定理可求(1)证明:ADBC,BEAC,BEC=ADC=90C+DAC=90=C+CBE,DAC=CBE在ADC和BEC中, ADCBEC(AAS);(2)解:ADCBEC,CD=CE=1,BC= ,AC=

    18、BC=【考点】本题考查了全等三角形的判定与性质,勾股定理,熟练掌握全等三角形的判定与性质是解题的关键3、大樱桃批发市场E应建在离A站20千米的地方【解析】【分析】由勾股定理两直角边的平方和等于斜边的平方分别求出和,列等式求解即可【详解】解:设大樱桃批发市场E应建在离A站x千米的地方,则千米在直角中,根据勾股定理得:,在直角中,根据勾股定理得:,又C、D两村到E点的距离相等,所以,解得大樱桃批发市场E应建在离A站20千米的地方【考点】本题考查勾股定理的实际应用,掌握两直角边的平方和等于斜边的平方是解题的关键4、尺【解析】【分析】设原处还有尺高的竹子,由题意得到折后竹子竖直高度+斜倒部分的长度=1

    19、8尺,再运用勾股定理列方程即可求解【详解】解:设折处离地还有尺高的竹子,如图,在中,AC=x尺,则AB=一丈八- AC =(18-x)尺由勾股定理得,所以,解得:答:折处离地还有尺高的竹子【考点】此题考查勾股定理解决实际问题此题中的直角三角形只知道一直角边,另两边未知往往要列方程求解5、(1)是,理由见解析;(2)2.5米【解析】【分析】(1)先根据勾股定理逆定理证得RtCHB是直角三角形,然后根据点到直线的距离中,垂线段最短即可解答;(2)设ACABx,则AHx1.8,在RtACH中,根据勾股定理列方程求得x即可【详解】(1),即,RtCHB是直角三角形,即CHBH,CH是从村庄C到河边的最近路(点到直线的距离中,垂线段最短);(2)设ACABx,则AHx1.8,在RtACH,即 ,解得x2.5,原来的路线AC的长为2.5米【考点】本题主要考查了勾股定理的应用,灵活应用勾股定理的逆定理和定理是解答本题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年度北师大版八年级数学上册第一章勾股定理专项测评试卷(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-643310.html
    相关资源 更多
  • 北师大版七年级上册2.1有理数及其分类(教案).docx北师大版七年级上册2.1有理数及其分类(教案).docx
  • 北师大版七年级上册2.12用计算器进行计算 同步练习(含答案).docx北师大版七年级上册2.12用计算器进行计算 同步练习(含答案).docx
  • 北师大版七年级上册2.11有理数的混合运算(导学练 课时练).docx北师大版七年级上册2.11有理数的混合运算(导学练 课时练).docx
  • 北师大版七年级上册2.10科学计数法(导学练 课时练 ).docx北师大版七年级上册2.10科学计数法(导学练 课时练 ).docx
  • 北师大版七年级上册1.2展开与折叠 学案(无答案).docx北师大版七年级上册1.2展开与折叠 学案(无答案).docx
  • 北师大版七年级上册 第四章 基本平面图形 同步练习(无答案).docx北师大版七年级上册 第四章 基本平面图形 同步练习(无答案).docx
  • 北师大版七年级上册 第五章 一元一次方程应用水箱变高了 讲义(无答案).docx北师大版七年级上册 第五章 一元一次方程应用水箱变高了 讲义(无答案).docx
  • 北师大版七年级上册 第二章有理数及其运算2.11 有理数的混合运算 学案.docx北师大版七年级上册 第二章有理数及其运算2.11 有理数的混合运算 学案.docx
  • 北师大版七年级上册 6.2普查和抽样调查导学案无答案.docx北师大版七年级上册 6.2普查和抽样调查导学案无答案.docx
  • 北师大版七年级上册 5.2呼吸作用 (5份打包).docx北师大版七年级上册 5.2呼吸作用 (5份打包).docx
  • 北师大版七年级上册 5.1认识一元一次方程 (2) 同步练习.docx北师大版七年级上册 5.1认识一元一次方程 (2) 同步练习.docx
  • 北师大版七年级上册 5.1认识一元一次方程 (2) 同步练习.docx北师大版七年级上册 5.1认识一元一次方程 (2) 同步练习.docx
  • 北师大版七年级上册 3.4整式的加减 同步练习.docx北师大版七年级上册 3.4整式的加减 同步练习.docx
  • 北师大版七年级上册 3.2 列代数式专题练习(含答案).docx北师大版七年级上册 3.2 列代数式专题练习(含答案).docx
  • 北师大版七年级上册 2.4 有理数的加法 学案无答案.docx北师大版七年级上册 2.4 有理数的加法 学案无答案.docx
  • 北师大版七年级上册 2.1 有理数 学案.docx北师大版七年级上册 2.1 有理数 学案.docx
  • 北师大版七年级上册 1.1生活中的立体图形 学案无(无答案).docx北师大版七年级上册 1.1生活中的立体图形 学案无(无答案).docx
  • 北师大版七年级上册5.5应用一元一次方程希望工程义演(含答案).docx北师大版七年级上册5.5应用一元一次方程希望工程义演(含答案).docx
  • 北师大版七年级上册5.4应用一元一次方程打折销售同步练习(含答案).docx北师大版七年级上册5.4应用一元一次方程打折销售同步练习(含答案).docx
  • 北师大版七年级上册3.3整式 课件.docx北师大版七年级上册3.3整式 课件.docx
  • 北师大版七年级上册3.3整式 .docx北师大版七年级上册3.3整式 .docx
  • 北师大版七年级上册 3.2 列代数式专题练习(含答案).docx北师大版七年级上册 3.2 列代数式专题练习(含答案).docx
  • 北师大版七年级上4-2《比较线段的长短》课件(3课件打包).docx北师大版七年级上4-2《比较线段的长短》课件(3课件打包).docx
  • 北师大版七年级上 5.1.1认识一元一次方程同步练习.docx北师大版七年级上 5.1.1认识一元一次方程同步练习.docx
  • 北师大版七年级 数学上册同步练习第五章 一元一次方程 本章复习.docx北师大版七年级 数学上册同步练习第五章 一元一次方程 本章复习.docx
  • 北师大版七年级 数学上册同步练习第五章第3节 应用一元一次方程水箱变高了.docx北师大版七年级 数学上册同步练习第五章第3节 应用一元一次方程水箱变高了.docx
  • 北师大版七年级 数学上册同步练习第五章 第6节 应用一元一次方程追赶小明.docx北师大版七年级 数学上册同步练习第五章 第6节 应用一元一次方程追赶小明.docx
  • 北师大版七年级 数学上册同步练习第五章第4节 应用一元一次方程打折销售.docx北师大版七年级 数学上册同步练习第五章第4节 应用一元一次方程打折销售.docx
  • 北师大版七年级 数学上册同步练习第五章第3节 应用一元一次方程水箱变高了.docx北师大版七年级 数学上册同步练习第五章第3节 应用一元一次方程水箱变高了.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1