2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷(含答案解析).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022-2023学年综合复习人教版九年级数学上册期中模拟考试试题 A卷含答案解析 2022 2023 学年 综合 复习 人教版 九年级 数学 上册 期中 模拟考试 试题 答案 解析
- 资源描述:
-
1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中模拟考试试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、在下列关于x的函数中,一定是二次函数的是( )Ay=x2By=ax2
2、+bx+cCy=8xDy=x2(1+x)2、三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A4米B5米C2米D7米3、如图,将绕点顺时针旋转得到,使点的对应点恰好落在边上,点的对应点为,连接下列结论一定正确的是()ABCD4、北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直
3、平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()ABCD5、已知二次函数yax2+bx+c与自变量x的部分对应值如表,下列说法错误的是()x1013y3131Aa0B方程ax2+bx+c2的正根在4与5之间C2a+b0D若点(5,y1)、(,y2)都在函数图象上,则y1y2二、多选题(5小题,每小题4分,共计20分) 线 封 密 内 号学级年名姓 线 封 密 外 1、如图,已知顶点为(3,6)的抛物线经过点(1,4),则下列
4、结论中正确的是()ABC关于x的一元二次方程的两根分别为和D若点(2,m),(5,n)在抛物线上,则2、关于二次函数y=ax2+bx+c的图象有下列命题,其中正确的命题是()A当c=0时,函数的图象经过原点;B当c0,且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根;C函数图象最高点的纵坐标是;D当b=0时,函数的图象关于y轴对称3、在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象不可能是()ABCD4、下列方程不适合用因式方程解法解的是()Ax23x+2=0B2x2=x+4C(x1)(x+2)=70Dx211x10=05、下列关于x的方程没有实数根的是()
5、Ax2-x10Bx2x10C(x-1)(x2)0D(x-1)210第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、已知方程x23x10的根是x1和x2,则x1x2x1x2_2、抛物线是二次函数,则m=_3、如图,正方形ABCD的边长为6,点E在边CD上以点A为中心,把ADE顺时针旋转90至ABF的位置若DE2,则FE_4、若函数图像与x轴的两个交点坐标为和,则_5、抛物线的顶点坐标为_ 线 封 密 内 号学级年名姓 线 封 密 外 四、解答题(5小题,每小题8分,共计40分)1、解一元二次方程(1) (2) 2、如图,抛物线y=2(x-2)2与平行于x轴的直线交于点A,
6、B,抛物线顶点为C,ABC为等边三角形,求SABC;3、如图是两条互相垂直的街道, 且A到B, C的距离都是4千米. 现甲从B地走向A地, 乙从A地走向C地, 若两人同时出发且速度都是4千米/时, 问何时两人之间的距离最近?4、如图1,抛物线y=ax2+bx+3交x轴于点A(1,0)和点B(3,0)(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上求四边形ACFD的面积;点P是线段AB上的动点(点P不与点A、B重合),过点P作PQx轴交该抛物线于点Q,连接AQ、DQ,当AQD是直角三角形时,求出所有满足条件的点Q的坐标5、已知抛物线(
7、1)该抛物线的对称轴为 ;(2)若该抛物线的顶点在x轴上,求抛物线的解析式;(3)设点M(m,),N(2,)在该抛物线上,若,求m的取值范围-参考答案-一、单选题1、A【解析】【分析】根据二次函数的定义:y=ax2+bx+c(a0a是常数),可得答案【详解】解:A、y=x2是二次函数,故A符合题意;B、a=0时不是二次函数,故B不符合题意,C、y=8x是一次函数,故C不符合题意;D、y=x2(1+x)不是二次函数,故D不符合题意;故选A 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查了二次函数的定义,利用二次函数的定义是解题关键,注意a是不等于零的常数2、B【解析】【分析】根据
8、题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=10代入可求解【详解】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=,设大孔所在抛物线解析式为y=ax2+,BC=10,点B(5,0),0=a(5)2+,a=-,大孔所在抛物线解析式为y=-x2+,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(xb)2,EF=14,点E的横坐标为-7,点E坐标为(-7,-),-=m(xb)2,x1=+b,x2=-+b,MN=4,|+b-(-+b)|=4m=-,顶点为A的小孔所在抛物线的解析式为
9、y=-(xb)2,大孔水面宽度为20米,当x=-10时,y=-,-=-(xb)2,x1=+b,x2=-+b,单个小孔的水面宽度=|(+b)-(-+b)|=5(米),故选:B【考点】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答3、D 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】利用旋转的性质得AC=CD,BC=EC,ACD=BCE,所以选项A、C不一定正确再根据等腰三角形的性质即可得出,所以选项D正确;再根据EBC=EBC+ABC=A+ABC=-ACB判断选项B不一定正确即可【详解】解:绕点顺时针旋转得到,AC=CD,BC=EC,AC
10、D=BCE,A=CDA=;EBC=BEC=,选项A、C不一定正确,A =EBC,选项D正确EBC=EBC+ABC=A+ABC=-ACB不一定等于,选项B不一定正确;故选D【考点】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等也考查了等腰三角形的性质4、B【解析】【分析】设抛物线解析式为y=ax2,由已知可得点B坐标为(45,-78),利用待定系数法进行求解即可.【详解】拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,设抛物线解析式为y
11、=ax2,点B(45,-78),-78=452a,解得:a=,此抛物线钢拱的函数表达式为,故选B.【考点】本题考查了二次函数的应用,熟练掌握待定系数法是解本题的关键.5、B【解析】【分析】利用表中函数值的变换情况可判断抛物线的开口方向,则可对A进行判断;利用抛物线的对称性可得x1和x4的函数值相等,则可对B进行判断;利用x0和x3时函数值相等可得到抛物线的对称轴方程,则可对C进行判断;利用二次函数的性质则可对D进行判断【详解】解:二次函数值先由小变大,再由大变小,抛物线的开口向下,a0,故A正确;x1时,y3,x4时,y3, 线 封 密 内 号学级年名姓 线 封 密 外 二次函数yax2+bx
12、+c的函数值为2时,1x0或3x4,即方程ax2+bx+c2的负根在1与0之间,正根在3与4之间,故B错误;抛物线过点(0,1)和(3,1),抛物线的对称轴为直线x,1,2a+b0,故C正确;(,y2)关于直线x的对称点为(,y2),5,y1y2,故D正确;故选:B【考点】本题主要考查了一元二次方程根与系数的关系、抛物线与x轴的交点、图象法求一元二次方程的近似根、根的判别式、二次函数图象与系数的关系,准确计算是解题的关键二、多选题1、ABC【解析】【分析】(1)由图象可知抛物线与x轴的交点个数,从而确定相应的一元二次方程根的情况即可;(2)抛物线开口方向向上,即函数有最小值,从而知道选项是否正
13、确;(3)根据图象分析出函数的对称轴,然后分析出关于对称轴的对称点,即可知道对应的一元二次方程的两个根;(4)根据抛物线开口方向和对称轴,判断分析两点离对称轴的距离,即可得出结论【详解】解:A、根据函数对称性,二次函数图象与x轴有两个交点,即对应的一元二次方程有两个不相等的实数根,此时,即,选项正确;B、抛物线开口方向向上,即函数有最小值,所以,选项正确;C、由函数图象知,对称轴为,所以点与关于对称轴对称,即关于x的一元二次方程的两根分别是和,选项正确;D、因为抛物线开口向上,对称轴为,离对称轴的距离大于离对称轴的距离,所以,所以选项错误故选:ABC【点睛】本题考查二次函数图象性质、二次函数与
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-646718.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
