分享
分享赚钱 收藏 举报 版权申诉 / 26

类型2022-2023学年解析卷人教版九年级数学上册期中定向测评试题 卷(Ⅰ)(含答案解析).docx

  • 上传人:a****
  • 文档编号:647331
  • 上传时间:2025-12-12
  • 格式:DOCX
  • 页数:26
  • 大小:905.45KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022-2023学年解析卷人教版九年级数学上册期中定向测评试题 卷含答案解析 2022 2023 学年 解析 卷人教版 九年级 数学 上册 期中 定向 测评 试题 答案
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中定向测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、对于函数的图象,下列说法不正确的是()A开口向下B对称轴是直线C最

    2、大值为D与轴不相交2、北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()ABCD3、关于二次函数的最大值或最小值,下列说法正确的是()A有最大值4B有最小值4C有最大值6D有最小值64、已知二次函数yax2+bx+c与自变量x的部分对应值如表,

    3、下列说法错误的是()x1013y3131Aa0B方程ax2+bx+c2的正根在4与5之间C2a+b0D若点(5,y1)、(,y2)都在函数图象上,则y1y25、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有()A2 个B3 个C4 个D5 个二、多选题(5小题,每小题4分,共计20分)1、如果关于的一元二次方程有两个相等的实根,那么对于以,为边的三角形,下面的判断不正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 A以为斜边的直角三角形B以为斜边的直角三角形C以为底边的等腰三角形D以为底边的等腰三角形2、对于抛物

    4、线y2(x3)21,下列说法错误的是()A开口向上B对称轴是直线x3C当x3时,y随x的增大而减小D当x3时,函数值有最小值是13、下列四个图形是国际通用的交通标志,其中不是中心对称图形的是()ABCD4、下列关于x的方程没有实数根的是()Ax2-x10Bx2x10C(x-1)(x2)0D(x-1)2105、下表时二次函数y=ax2+bx+c的x,y的部分对应值:则对于该函数的性质的判断中正确的是()A该二次函数有最大值B不等式y1的解集是x0或x2C方程y=ax2+bx+c的两个实数根分别位于x0和2x之间D当x0时,函数值y随x的增大而增大第卷(非选择题 65分)三、填空题(5小题,每小题

    5、5分,共计25分)1、已知方程的一根为,则方程的另一根为_2、如图,已知P是函数y1图象上的动点,当点P在x轴上方时,作PHx轴于点H,连接PO小华用几何画板软件对PO,PH的数量关系进行了探讨,发现POPH是个定值,则这个定值为 _3、一个直角三角形的两条直角边相差5cm,面积是7cm2,则其斜边的长是 _4、九章算术是我国古代的数学名著,其中“勾股”章有一题,大意是说:已知矩形门的高比宽多尺,门的对角线长尺,那么门的高和宽各是多少?如果设门的宽为尺,根据题意,那么可列方程_5、如图,点O是正方形ABCD的对称中心,射线OM,ON分别交正方形的边AD,CD于E,F两点,连接EF,已知,(1)

    6、以点E,O,F,D为顶点的图形的面积为_;(2)线段EF的最小值是_四、解答题(5小题,每小题8分,共计40分)1、用适当的方法解下列方程: 线 封 密 内 号学级年名姓 线 封 密 外 (1)(2)2、如图,抛物线与轴交于两点,与轴交于点,且,.(1)求抛物线的表达式;(2)点是抛物线上一点在抛物线的对称轴上,求作一点,使得的周长最小,并写出点的坐标;连接并延长,过抛物线上一点(点不与点重合)作轴,垂足为,与射线交于点,是否存在这样的点,使得,若存在,求出点的坐标;若不存在,请说明理由3、阅读下面内容,并答题:我们知道,计算n边形的对角线条数公式为n(n3)如果一个n边形共有20条对角线,那

    7、么可以得到方程n(n3)20解得n8或n5(舍去),这个n边形是八边形根据以上内容,问:(1)若一个多边形共有9条对角线,求这个多边形的边数;(2)小明说:“我求得一个n边形共有10条对角线”,你认为小明同学的说法正确吗?为什么?4、已知,如图,二次函数的图象与轴交于A,两点,与轴交于点,且经过点(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标和对称轴(3)求的面积,写出时的取值范围5、如图,已知正方形点在边上,以为边在左侧作正方形;以为邻边作平行四边形连接 (1)判断和的数量及位置关系,并说明理由;(2)将绕点顺时针旋转,在旋转过程中,和的数量及位置关系是否发生变化?请说明理由-参考答案

    8、-一、单选题1、D【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】根据二次函数的性质,进行判断,即可得到答案.【详解】解:,则开口向下,故A正确;对称轴是直线,故B正确;当,y有最大值k,故C正确;当,与y轴肯定有交点,故D错误;故选择:D.【考点】本题考查了二次函数的性质,解题的关键是熟记二次函数的性质.2、B【解析】【分析】设抛物线解析式为y=ax2,由已知可得点B坐标为(45,-78),利用待定系数法进行求解即可.【详解】拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,设抛物线

    9、解析式为y=ax2,点B(45,-78),-78=452a,解得:a=,此抛物线钢拱的函数表达式为,故选B.【考点】本题考查了二次函数的应用,熟练掌握待定系数法是解本题的关键.3、D【解析】【分析】根据二次函数的解析式,得到a的值为2,图象开口向上,函数有最小值,根据定点坐标(4,6),即可得出函数的最小值【详解】解:在二次函数中,a=20,顶点坐标为(4,6),函数有最小值为6故选:D【考点】本题主要考查了二次函数的最值问题,关键是根据二次函数的解析式确定a的符号和根据顶点坐标求出最值4、B【解析】【分析】利用表中函数值的变换情况可判断抛物线的开口方向,则可对A进行判断;利用抛物线的对称性可

    10、得x1和x4的函数值相等,则可对B进行判断;利用x0和x3时函数值相等可得到抛物线的对称轴方程,则可对C进行判断;利用二次函数的性质则可对D进行判断【详解】解:二次函数值先由小变大,再由大变小, 线 封 密 内 号学级年名姓 线 封 密 外 抛物线的开口向下,a0,故A正确;x1时,y3,x4时,y3,二次函数yax2+bx+c的函数值为2时,1x0或3x4,即方程ax2+bx+c2的负根在1与0之间,正根在3与4之间,故B错误;抛物线过点(0,1)和(3,1),抛物线的对称轴为直线x,1,2a+b0,故C正确;(,y2)关于直线x的对称点为(,y2),5,y1y2,故D正确;故选:B【考点】

    11、本题主要考查了一元二次方程根与系数的关系、抛物线与x轴的交点、图象法求一元二次方程的近似根、根的判别式、二次函数图象与系数的关系,准确计算是解题的关键5、C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】解:(1)函数开口向下,a0,对称轴在y轴的右边,b0,故命题正确;(2)a0,b0,c0,abc0,故命题正确;(3)当x=-1时,y0,a-b+c0,故命题错误;(4)当x=1时,y0,a+b+c0,故命题正确;(5)抛物线与x轴于两个交点,b2-4ac0,故命题正确;故选

    12、C【考点】本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用二、多选题1、BCD【解析】【分析】根据判别式的意义得到,再整理得到,然后根据勾股定理的逆定理进行判断【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:根据题意得,整理得,所以三角形是以为斜边的直角三角形故选:BCD【点睛】本题考查了一元二次方程的根的判别式、勾股定理的逆定理,解题的关键是掌握当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根2、CD【解析】【分析】根据抛物线的性质由得到图像开口向上,根据顶点式得到顶

    13、点坐标为,对称轴为直线,当时,随增大而增大【详解】解:由抛物线y2(x3)21得抛物线开口向上,故A正确,不符合题意;由抛物线顶点式可知顶点坐标为,对称轴为直线,故B正确,不符合题意;由抛物线对称轴以及开口方向可知,当时,随增大而增大,故C错误,符合题意;当当x3时,函数值有最小值是1,故D错误,符合题意;故答案为:CD【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握抛物线顶点式的性质3、BCD【解析】【分析】根据中心对称图形的概念求解【详解】解:A、是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项符合题意;C、不是中心对称图形,故本选项符合题意;D、不是中心对称图形,

    14、故本选项符合题意故选:BCD【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合4、ABD【解析】【分析】将选项中的式子转换为一元二次方程一般式,根据根的判别式可得结果【详解】解:A、x2-x10,方程没有实数根,此选项符合题意;B、x2x10,方程没有实数根,此选项符合题意;C、(x-1)(x2)0,方程有实数根,此选项不符合题意;D、原式整理为:,方程没有实数根,此选项符合题意;故选:ABD【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的实数根;当时,方程有两个相等的

    15、实数根;当时,方程无实数根5、BC【解析】【分析】由图表可得二次函数y=ax2+bx+c的对称轴为直线x=1,a0,即可判断A,D不正确,由图表可直接判断B,C正确【详解】解:当x=0时,y=-1;当x=2时,y=-1;当x=,y=;当x=,y=;二次函数y=ax2+bx+c的对称轴为直线x=1,x1时,y随x的增大而增大,x1时,y随x的增大而减小a0即二次函数有最小值则A,D错误由图表可得:不等式y-1的解集是x0或x2;由图表可得:方程ax2+bx+c=0的两个实数根分别位于-x0和2x之间;所以选项B,C正确,故选:BC【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的最

    16、值,理解图表中信息是本题的关键三、填空题1、【解析】【分析】设方程的另一个根为c,再根据根与系数的关系即可得出结论【详解】解:设方程的另一个根为c,故答案为【考点】本题考查的是根与系数的关系,熟记一元二次方程根与系数的关系是解答此题的关键2、2【解析】【分析】设p(x,x2-1),则OH=|x|,PH=|x2-1|,因点P在x轴上方,所以x2-10,由勾股定理求得OP=x2+1,即可求得OP-PH=2,得出答案【详解】解:设p(x,x2-1),则OH=|x|,PH=|x2-1|,当点P在x轴上方时,x2-10, 线 封 密 内 号学级年名姓 线 封 密 外 PH=|x2-1|=x2-1,在Rt

    17、OHP中,由勾股定理,得OP2=OH2+PH2=x2+(x2-1)2=(x2+1)2,OP=x2+1,OP-PH=(x2+1)-(x2-1)=2,故答案为:2【考点】本题考查二次函数图象上点的坐标特征,勾股定理,利用坐标求线段长度是解题的关键3、cm【解析】【分析】设较短的直角边长是xcm,较长的就是(x+5)cm,根据面积是7cm,求出直角边长,根据勾股定理求出斜边长【详解】解:设这个直角三角形的较短直角边长为xcm,则较长直角边长为(x5)cm,根据题意,得,所以,解得,因为直角三角形的边长为正数,所以不符合题意,舍去,所以x2,当x2时,x57,由勾股定理,得直角三角形的斜边长为cm故答

    18、案为:cm【考点】本题考查了勾股定理,一元二次方程的应用,关键是知道三角形面积公式以及直角三角形中勾股定理的应用4、或【解析】【分析】设门的宽为x尺,则门的高为(x+6)尺,利用勾股定理,即可得出关于x的一元二次方程,此题得解【详解】解:设门的宽为x尺,则门的高为(x+6)尺,依题意得:即或故答案为:或【考点】本题考查了由实际问题抽象出一元二次方程以及勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键5、 1 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】(1)连接AO,DO,证明,可得,求出即可求解;(2)设,则,由勾股定理可得,即可求EF的最小值【详解】解:(1

    19、)连接AO,DO,四边形ABCD是正方形,O是中心,故答案为:1;(2)设,则, , 在中,当时,EF有最小值,故答案为:【考点】本题考查正方形的性质,全等三角形的判定与性质,二次函数的性质,熟练掌握二次函数求最值的方法是解题的关键四、解答题1、 (1),(2),【解析】【分析】根据因式分解法解一元二次方程即可(1)解: 线 封 密 内 号学级年名姓 线 封 密 外 解得,(2)解:解得,【点睛】本题考查了解一元二次方程,熟练掌握因式分解法解一元二次方程是解题的关键2、(1);(2)连接交抛物线对称轴于点,则点即为所求,点的坐标为;存在;点的坐标为或【解析】【分析】(1)由,得到A(-2,0)

    20、,C(3,0),即可写出抛物线的交点式.(2)因为关于对称轴对称,所以,由两点之间线段最短,知连接交抛物线对称轴于点,则点即为所求,先用待定系数法求出解析式,将对称轴代入得到点坐标.设点,根据抛物线的解析式、直线的解析式,写出Q、M的坐标,分当在上方、下方两种情况,列关于m的方程,解出并取大于-2的解,即可写出的坐标.【详解】(1),结合图象,得A(-2,0),C(3,0),抛物线可表示为:,抛物线的表达式为;(2)关于对称轴对称,,连接交抛物线对称轴于点,则点即为所求.将点,的坐标代入一次函数表达式,得直线的函数表达式为.抛物线的对称轴为直线,当时,,故点的坐标为;存在;设点,则,.当在上方

    21、时,解得(舍)或;当在下方时, 线 封 密 内 号学级年名姓 线 封 密 外 ,解得(舍)或,综上所述,的值为或5,点的坐标为或.【点睛】本题考查了二次函数与一次函数综合问题,熟练掌握待定系数法求解析式、最短路径问题是解题的基础,动点问题中分类讨论与数形结合转化为方程问题是解题的关键.3、 (1)6(2)错误,理由见解析【解析】【分析】(1)利用题中给出的对角线条数公式即可求解;(2)利用题中给出的对角线条数公式列出一元二次方程,求解方程的根,根据方程是否有正整数解来判断即可(1)设这个多边形的边数是n,则n(n3)9,解得n6或n3(舍去)这个多边形的边数是6;(2)小明同学的说法是不正确的

    22、,理由如下:由题可得n(n3)10,解得n,符合方程的正整数n不存在,n边形不可能有10条对角线,故小明的说法不正确【点睛】本题主要考查了一元二次方程的应用,通过方程是否有正整数解来判断是否存在有10条对角线的多边形是解答本题的关键4、(1);(2)顶点坐标是,对称轴是;(3)的面积为21,时,的取值范围是【解析】【分析】(1)直接利用待定系数法将已知点代入得出方程组求出答案;(2)直接利用配方法求出抛物线顶点坐标和对称轴即可;(3)首先求出抛物线与x轴的交点坐标,然后利用三角形面积公式和图像得出答案【详解】(1)二次函数的图象经过点、, 线 封 密 内 号学级年名姓 线 封 密 外 解这个方

    23、程组,得,该二次函数的解析式是;(2),顶点坐标是;对称轴是;(3)二次函数的图象与轴交于,两点,解这个方程得:,即二次函数与轴的两个交点的坐标为,的面积由图像可得,当时,故时,的取值范围是【点睛】本题主要考查了待定系数法求函数表达式,求三角形面积,图像法求自变量求职范围,用配方法求抛物线顶点坐标和对称轴,求出函数表达式是解决问题的关键5、(1);理由见解析;(2)与的数量及位置关系都不变;答案见解析【解析】【分析】(1)证明,由全等三角形的性质得出,得出,则可得出结论;(2)证明,由全等三角形的性质得出,由平行线的性质证出,则可得出结论【详解】解:(1),由题意可得,平行四边形为矩形,设与交于点,则,即(2)与的数量及位置关系都不变如图,延长到点, 线 封 密 内 号学级年名姓 线 封 密 外 四边形为平行四边形,又,即【点睛】本题考查了旋转的性质,全等三角形的判定和性质,正方形的性质,解题的关键是:熟练掌握正方形的性质

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022-2023学年解析卷人教版九年级数学上册期中定向测评试题 卷(Ⅰ)(含答案解析).docx
    链接地址:https://www.ketangku.com/wenku/file-647331.html
    相关资源 更多
  • 人教版九年级化学:“有关化学之最”知识归纳练习题(无答案).docx人教版九年级化学:“有关化学之最”知识归纳练习题(无答案).docx
  • 人教版九年级化学:“实验室常见的仪器及使用”质量检测练习题(无答案).docx人教版九年级化学:“实验室常见的仪器及使用”质量检测练习题(无答案).docx
  • 人教版九年级化学:“地壳中元素的分布与含量”能力提升练习题(无答案).docx人教版九年级化学:“地壳中元素的分布与含量”能力提升练习题(无答案).docx
  • 人教版九年级化学:“地壳中元素的分布与含量”知识拓展练习题(无答案).docx人教版九年级化学:“地壳中元素的分布与含量”知识拓展练习题(无答案).docx
  • 人教版九年级化学:“反应类型的判定”能力提升练习题(无答案).docx人教版九年级化学:“反应类型的判定”能力提升练习题(无答案).docx
  • 人教版九年级化学:“反应类型的判定”知识拓展练习题(无答案).docx人教版九年级化学:“反应类型的判定”知识拓展练习题(无答案).docx
  • 人教版九年级化学:“化学相关人物及贡献”质量检测练习题(无答案).docx人教版九年级化学:“化学相关人物及贡献”质量检测练习题(无答案).docx
  • 人教版九年级化学:“化学相关人物及贡献”能力提升检测练习题(无答案).docx人教版九年级化学:“化学相关人物及贡献”能力提升检测练习题(无答案).docx
  • 人教版九年级化学:“化学相关人物及贡献”知识拓展练习题(无答案).docx人教版九年级化学:“化学相关人物及贡献”知识拓展练习题(无答案).docx
  • 人教版九年级化学:“化学相关人物及贡献”知识归纳练习题(无答案).docx人教版九年级化学:“化学相关人物及贡献”知识归纳练习题(无答案).docx
  • 人教版九年级化学:“化学的研究领域和用途”过关练习题(无答案).docx人教版九年级化学:“化学的研究领域和用途”过关练习题(无答案).docx
  • 人教版九年级化学:“化学的研究领域和用途”过关检测题(无答案).docx人教版九年级化学:“化学的研究领域和用途”过关检测题(无答案).docx
  • 人教版九年级化学:“化学的研究领域和用途”练习题(无答案).docx人教版九年级化学:“化学的研究领域和用途”练习题(无答案).docx
  • 人教版九年级化学:“化学的基本知识”应用练习题(无答案).docx人教版九年级化学:“化学的基本知识”应用练习题(无答案).docx
  • 人教版九年级化学:“化学的基本常识”应用达标练习题(无答案).docx人教版九年级化学:“化学的基本常识”应用达标练习题(无答案).docx
  • 人教版九年级化学:“化学性质与物理性质的差别及应用”过关检测练习题(无答案).docx人教版九年级化学:“化学性质与物理性质的差别及应用”过关检测练习题(无答案).docx
  • 人教版九年级化学:“化学性质与物理性质的差别及应用”知识拓展练习题(无答案).docx人教版九年级化学:“化学性质与物理性质的差别及应用”知识拓展练习题(无答案).docx
  • 人教版九年级化学:“化学性质与物理性质的差别及应用”知识归纳练习题(无答案).docx人教版九年级化学:“化学性质与物理性质的差别及应用”知识归纳练习题(无答案).docx
  • 人教版九年级化学:“化学性质与物理性质差别及应用”能力提升练习题(无答案).docx人教版九年级化学:“化学性质与物理性质差别及应用”能力提升练习题(无答案).docx
  • 人教版九年级化学:“几种常见的与化学有关的图标”达标检测练习题(无答案).docx人教版九年级化学:“几种常见的与化学有关的图标”达标检测练习题(无答案).docx
  • 人教版九年级化学:“几种常见的与化学有关的图标”知识拓展练习题(无答案).docx人教版九年级化学:“几种常见的与化学有关的图标”知识拓展练习题(无答案).docx
  • 人教版九年级化学(上)专题化学用语练习题(无答案).docx人教版九年级化学(上)专题化学用语练习题(无答案).docx
  • 人教版九年级化学(上册)说课--氧气的实验室制取与性1.docx人教版九年级化学(上册)说课--氧气的实验室制取与性1.docx
  • 人教版九年级化学(上册)氧气的性质探究实验说课设计.docx人教版九年级化学(上册)氧气的性质探究实验说课设计.docx
  • 人教版九年级化学第四单元课题4《化学式与化合价》.docx人教版九年级化学第四单元课题4《化学式与化合价》.docx
  • 人教版九年级化学第四单元课题3《水的组成》.docx人教版九年级化学第四单元课题3《水的组成》.docx
  • 人教版九年级化学第四单元课题2《水的净化》.docx人教版九年级化学第四单元课题2《水的净化》.docx
  • 人教版九年级化学第四单元课题1《爱护水资源》.docx人教版九年级化学第四单元课题1《爱护水资源》.docx
  • 人教版九年级化学第六单元课题3《二氧化碳和一氧化碳》.docx人教版九年级化学第六单元课题3《二氧化碳和一氧化碳》.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1