分享
分享赚钱 收藏 举报 版权申诉 / 9

类型2022届高考数学二轮专题复习-多面体中的几何模型问题讲义 WORD版含答案.docx

  • 上传人:a****
  • 文档编号:685922
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:9
  • 大小:875.03KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022届高考数学二轮专题复习-多面体中的几何模型问题讲义 WORD版含答案 2022 高考 数学 二轮 专题 复习 多面体 中的 几何 模型 问题 讲义 WORD 答案
    资源描述:

    1、多面体中的几何问题本文选取几个立体几何的几何模型题型,重点说明直观想象能力在解题中的作用,强调数形结合能力,重视核心素养在学习过程中的渗透。空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.1.四棱锥模型中的三角函数求值问题如右图所示,在四棱锥P-ABCD中,底面ABCD是棱长为2的正方形,侧面PAD为正三角形,且面PAD面ABCD,E,F分别为棱AB,PC的中点(1)求

    2、证:平面;(2)求二面角的正切值解:(1)证明:取PD中点G,连结为的中位线,且,又且,且,EFGA是平行四边形,则EFAG,又面,面,面;(2)解:取AD中点O,连结PO,面面,为正三角形,面,且,连交于,可得,则,即连,又,可得平面,则,即是二面角的平面角,在中,即二面角的正切值为.【评注】本题考查三棱锥中二面角的三角函数值问题.2.拼接组合四棱锥中点与平面距离问题在多边形ABPCD中(图1),四边形ABCD为长方形,为正三角形,现以BC为折痕将折起,使点P在平面ABCD内的射影恰好在AD上(图2).(1)证明:平面平面PAB;(2)若点E在线段PB上,且,当点Q在线段AD上运动时,求点Q

    3、到平面EBC的距离.分析:(1)过点作,垂足为O,由于点P在平面ABCD内的射影恰好在AD上,可得PO平面ABCD,进一步得到ABAD,由线面垂直的判定可得ABPD,通过计算PA,PD,AD,可得,从而得,则平面,再根据面面垂直的判定定理即可证明结果; (2)利用等积法即可求出点到底面的距离解:(1)证明:过点作,垂足为O.由于点P在平面ABCD内的射影恰好在AD上,平面ABCD,四边形ABCD为矩形,又,平面PAD,又由,可得,同理,又,且,平面PAB又因为平面PCD所以平面平面PAB(2)设点E到底面QBC的距离为h,所以点Q到平面EBC的距离为d则,由,可知,且,又,.所以点Q到平面EB

    4、C的距离为.【评注】本题考查面面垂直的判定,考查空间想象能力与思维能力,训练了利用等积法求点到面的距离,是中档题3.圆与三棱锥拼接几何结果中的函数问题如图,内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,平面ABC,(1)求证:平面ACD;(2)设,表示三棱锥B-ACE的体积,求函数的解析式及最大值解:(1)证明:四边形DCBE为平行四边形,平面ABC,平面ABC,AB是圆O的直径,且,平面ADC,平面ADC,平面ADC(2)解平面ABC,平面ABC在中,在中,当且仅当,即时取等号,当时,体积有最大值【评注】本题考查了线面垂直的证明和三棱锥的体积,考查了学生逻辑推理,空间想象,转化划

    5、归,数学运算的能力,属于中档题.4.四棱锥中的向量法求解问题【1】如图,在四棱锥中,侧面底面,底面为梯形,(1)证明:;(2) 若为正三角形,求二面角的余弦值.分析:(1)先证明BD平面PAD,再证明;(2)如图所示,建立空间直角坐标系,利用向量法求二面角的余弦值.解:(1)证明:因为,又底面为直角梯形面底面因为面底面,平面ABCD,所以BD平面所以.(2)如图所示,建立空间直角坐标系,设平面的法向量为所以,令设平面的法向量为令设二面角的平面角为 .由图观察为钝角【评注】本题主要考查空间位置关系的证明,考查空间二面角的计算,意在考查学生对这些知识的理解掌握水平.【2】如图,梯形中,过分别作,垂

    6、足分别,已知,将梯形沿同侧折起,得空间几何体 ,如图1若,证明:平面;2若,线段上存在一点,满足与平面所成角的正弦值为,求的长分析:1由正方形的性质推导出,结合,可得平面,由此,再由,能证明平面;2过作交于点,以为坐标原点,以分别为轴,轴,轴的正方向建立空间直角坐标系,设,可得,利用向量垂直数量积为零求出平面的法向量,利用空间向量夹角余弦公式能求出结果解:1由已知得四边形ABFE是正方形,且边长为2,在图2中,由已知得,平面又平面BDE,又,平面2在图2中,即面DEFC,在梯形DEFC中,过点D作交CF于点M,连接CE,由题意得,由勾股定理可得,则,过E作交DC于点G,可知GE,EA,EF两两

    7、垂直,以E为坐标原点,以分别为x轴,y轴,z轴的正方向建立空间直角坐标系,则,设平面ACD的一个法向量为,由得,取得,设,则m,得设CP与平面ACD所成的角为,所以5.轨迹动点问题正四棱锥底面边长为,高为,是边的中点,动点在四棱锥表面上运动,并且总保持,则动点的轨迹的周长为_答案:分析:取,的中点, 根据三角形中位线、面面平面的判定定理、线面垂直的判定定理,可以证明出平面,这样可以确定动点在四棱锥表面上运动的轨迹为,然后求出周长即可.解:如图所示,取,的中点,则,由线面判定定理可知:平面,平面,而,所以平面平面,设是底面正方形的中心,所以正四棱锥的高为,则,则有,而,所以平面,所以平面,因为,

    8、所以有,则动点在四棱锥表面上运动的轨迹为,则动点的轨迹的周长为故答案为:【评注】本题考查了立体几何中轨迹问题,考查了线面垂直的判定定理、面面平行的判定定理,考查了推理认证能力和空间想象能力.拓展思考-多面体问题:已知多面体中,为中点.(1)求证:;(2)求直线与平面所成角的正弦.【详解】法一:(1)由得:;如图:取中点,连接,得:,;故:;(2)过点作;连接,则为直线与平面所成角的平面角,即有,不妨设,即有:,所以法二:由得:;如图建系得:,,,(1),则(2)设面的法向量为,即有:,故【评注】本题考查利用线面垂直证线线垂直,求线面角的正弦值,相对来说,立体图形比较规整,也可采用建系法进行求解,属于中档题

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022届高考数学二轮专题复习-多面体中的几何模型问题讲义 WORD版含答案.docx
    链接地址:https://www.ketangku.com/wenku/file-685922.html
    相关资源 更多
  • 人教版高中历史必修二第七单元 第二十一课 二战后苏联经济的改革 同步测试.docx人教版高中历史必修二第七单元 第二十一课 二战后苏联经济的改革 同步测试.docx
  • 人教版高中历史必修二第24课世界经济全球化趋势教学设计.docx人教版高中历史必修二第24课世界经济全球化趋势教学设计.docx
  • 人教版高中历史必修二第18课《罗斯福新政》优质教学设计(7页).docx人教版高中历史必修二第18课《罗斯福新政》优质教学设计(7页).docx
  • 人教版高中历史必修二模拟题精选:第八单元 世界经济的全球化趋势.docx人教版高中历史必修二模拟题精选:第八单元 世界经济的全球化趋势.docx
  • 人教版高中历史必修二 第四单元 中国特色社会主义建设的道路 单元测试.docx人教版高中历史必修二 第四单元 中国特色社会主义建设的道路 单元测试.docx
  • 人教版高中历史必修二 第二单元 资本主义世界的市场的形成和发展 单元测试.docx人教版高中历史必修二 第二单元 资本主义世界的市场的形成和发展 单元测试.docx
  • 人教版高中历史必修二 第七单元 苏联的社会主义建设 单元测试.docx人教版高中历史必修二 第七单元 苏联的社会主义建设 单元测试.docx
  • 人教版高中历史必修三试题:第四单元近代以来世界的科学发展历程.docx人教版高中历史必修三试题:第四单元近代以来世界的科学发展历程.docx
  • 人教版高中历史必修三试题:第五单元近代中国的思想解放潮流.docx人教版高中历史必修三试题:第五单元近代中国的思想解放潮流.docx
  • 人教版高中历史必修三试题:第三单元古代中国的科学技术与文学艺术.docx人教版高中历史必修三试题:第三单元古代中国的科学技术与文学艺术.docx
  • 人教版高中历史必修三试题:8.23美术的辉煌.docx人教版高中历史必修三试题:8.23美术的辉煌.docx
  • 人教版高中历史必修三试题:7.21 现代中国教育的发展.docx人教版高中历史必修三试题:7.21 现代中国教育的发展.docx
  • 人教版高中历史必修三试题:7.20“百花齐放”“百家争鸣”.docx人教版高中历史必修三试题:7.20“百花齐放”“百家争鸣”.docx
  • 人教版高中历史必修三试题:6.18 新时期的理论探索.docx人教版高中历史必修三试题:6.18 新时期的理论探索.docx
  • 人教版高中历史必修三试题:6.16三民主义的形成和发展.docx人教版高中历史必修三试题:6.16三民主义的形成和发展.docx
  • 人教版高中历史必修三试题:4.13从蒸汽机到互联网.docx人教版高中历史必修三试题:4.13从蒸汽机到互联网.docx
  • 人教版高中历史必修三试题:4.12破解生命起源之谜.docx人教版高中历史必修三试题:4.12破解生命起源之谜.docx
  • 人教版高中历史必修三试题:4.11物理学的重大进展.docx人教版高中历史必修三试题:4.11物理学的重大进展.docx
  • 人教版高中历史必修三试题:3.9辉煌灿烂的文学.docx人教版高中历史必修三试题:3.9辉煌灿烂的文学.docx
  • 人教版高中历史必修三试题:2.7启蒙运动.docx人教版高中历史必修三试题:2.7启蒙运动.docx
  • 人教版高中历史必修三试题:1.1“百家争鸣”和儒家思想的形成.docx人教版高中历史必修三试题:1.1“百家争鸣”和儒家思想的形成.docx
  • 人教版高中历史必修三第四单元 第12课 探索生命起源之谜 同步测试.docx人教版高中历史必修三第四单元 第12课 探索生命起源之谜 同步测试.docx
  • 人教版高中历史必修三第四单元 第11课 物理学的重大进展 同步测试.docx人教版高中历史必修三第四单元 第11课 物理学的重大进展 同步测试.docx
  • 人教版高中历史必修三第四单元 《近代以来世界的科学发展历程》单元测试题(解析版).docx人教版高中历史必修三第四单元 《近代以来世界的科学发展历程》单元测试题(解析版).docx
  • 人教版高中历史必修三第六单元 第18课 新时期的理论探索 同步测试.docx人教版高中历史必修三第六单元 第18课 新时期的理论探索 同步测试.docx
  • 人教版高中历史必修三第六单元 第17课 毛泽东思想 同步测试.docx人教版高中历史必修三第六单元 第17课 毛泽东思想 同步测试.docx
  • 人教版高中历史必修三第三单元测评.docx人教版高中历史必修三第三单元测评.docx
  • 人教版高中历史必修三第三单元 第10课 充满魅力的书画和戏曲艺术 同步测试.docx人教版高中历史必修三第三单元 第10课 充满魅力的书画和戏曲艺术 同步测试.docx
  • 人教版高中历史必修三第七单元 第20课 百花齐放、百家争鸣 同步测试.docx人教版高中历史必修三第七单元 第20课 百花齐放、百家争鸣 同步测试.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1