分享
分享赚钱 收藏 举报 版权申诉 / 28

类型2022年人教版九年级数学上册期中综合测评试题 卷(Ⅱ)(含答案详解).docx

  • 上传人:a****
  • 文档编号:695348
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:28
  • 大小:626.12KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年人教版九年级数学上册期中综合测评试题 卷含答案详解 2022 年人教版 九年级 数学 上册 期中 综合 测评 试题 答案 详解
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中综合测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨

    2、径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()ABCD2、二次函数的顶点坐标为,图象如图所示,有下列四个结论:;,其中结论正确的个数为()A个B个C个D个3、已知关于x的方程有一个根为1,则方程的另一个根为()A-1B1C2D-24、在下列关于x的函数中,一定是二次函数的是( )Ay=x2By=ax2+b

    3、x+cCy=8xDy=x2(1+x)5、若P(x,3)与点Q(4,y)关于原点对称,则xy的值是()A12B12C64D64二、多选题(5小题,每小题4分,共计20分)1、在二次函数y=ax2+bx+c,x与y的部分对应值如下表:则下列说法中正确的是()x2023y8003A图象经过原点;B图象开口向下;C图象经过点(1,3);D当x0时,y随x的增大而增大;E方程ax2+bx+c=0有两个不相等的实数根2、如图,二次函数yax2+bx+c的图象经过点A(4,0),其对称轴为直线x1,下列结论正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 Aa+b+c0Babc0C2a+b0D若P

    4、(6,y1),Q(m,y2)是抛物线上两点,且y1y2,则6m43、如图,已知顶点为(3,6)的抛物线经过点(1,4),则下列结论中正确的是()ABC关于x的一元二次方程的两根分别为和D若点(2,m),(5,n)在抛物线上,则4、如图,若二次函数yax2+bx+c(a0)的图象的对称轴是直线x1,则下列四个结论中,错误的是()Aabc0B2ab0C4acb20D4a+c2b5、以图(以点O为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换能得到图的有()A只要向右平移1个单位B先以直线为对称轴进行翻折,再向右平移1个单位C先绕着点O旋转,再向右平移1个单位D绕着的中点旋转即可第卷(非选

    5、择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,菱形ABCD的边长为2,A60,E是边AB的中点,F是边AD上的一个动点,将线段EF绕着点E顺时针旋转60得到EG,连接DG、CG,则DG+CG的最小值为 _ 线 封 密 内 号学级年名姓 线 封 密 外 2、抛物线的图象和轴有交点,则的取值范围是_3、如果关于的一元二次方程的一个解是,那么代数式的值是_4、如图,抛物线yx2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CDABAD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为_5、若二次函数的顶点在x轴上,则_

    6、四、解答题(5小题,每小题8分,共计40分)1、在数学活动课上,王老师要求学生将图1所示的33正方形方格纸,剪掉其中两个方格,使之成为轴对称图形规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个33的正方形方格画一种,例图除外)2、已知关于的方程有实根(1)求的取值范围;(2)设方程的两个根分别是,且,试求的值3、已知,如图,二次函数的图象与轴交于A,两点,与轴交于点,且经过点(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标和对称轴(3)求的面积,写出时的取值范围4、如

    7、图,在平面直角坐标系中,ABC的BC边与x轴重合,顶点A在y轴的正半轴上,线段OB,OC()的长是关于x的方程的两个根,且满足CO2AO 线 封 密 内 号学级年名姓 线 封 密 外 (1)求直线AC的解析式;(2)若P为直线AC上一个动点,过点P作PDx轴,垂足为D,PD与直线AB交于点Q,设CPQ的面积为S(),点P的横坐标为a,求S与a的函数关系式;(3)点M的坐标为,当MAB为直角三角形时,直接写出m的值5、某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少商家决定当售价为60元/件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元

    8、该商品销售量y(件)与售价x(元/件)满足如图所示的函数关系,(其中,且x为整数)(1)直接写出y与x的函数关系式;(2)当售价为多少时,商家所获利润最大,最大利润是多少?-参考答案-一、单选题1、B【解析】【分析】设抛物线解析式为y=ax2,由已知可得点B坐标为(45,-78),利用待定系数法进行求解即可.【详解】拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,设抛物线解析式为y=ax2,点B(45,-78),-78=452a,解得:a=,此抛物线钢拱的函数表达式为,故选B.【考点】本题考查了二次

    9、函数的应用,熟练掌握待定系数法是解本题的关键.2、A【解析】【分析】根据二次函数的性质和已知条件,对每一项逐一进行判断即可【详解】解:由图像可知a0,c0,对称轴在正半轴,0, 线 封 密 内 号学级年名姓 线 封 密 外 b0,故正确;当x=2时,y0,故,故正确;函数解析式为:y=a(x-1)2+2=ax2-2ax+a+2假设成立,结合解析式则有a+2,解得a,故,正确;故选:A【考点】本题考查了二次函数图象与系数的关系,结合图象,运用所学知识是解题关键3、C【解析】【分析】根据根与系数的关系列出关于另一根t的方程,解方程即可【详解】解:设关于x的方程的另一个根为xt,1t3,解得,t2故

    10、选:C【考点】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2bxc0(a0)的两根时,x1x2,x1x24、A【解析】【分析】根据二次函数的定义:y=ax2+bx+c(a0a是常数),可得答案【详解】解:A、y=x2是二次函数,故A符合题意;B、a=0时不是二次函数,故B不符合题意,C、y=8x是一次函数,故C不符合题意;D、y=x2(1+x)不是二次函数,故D不符合题意;故选A【考点】本题考查了二次函数的定义,利用二次函数的定义是解题关键,注意a是不等于零的常数5、A【解析】【分析】直接利用关于原点对称点的性质得出x,y的值,进而得出答案【详解】与点关于原点对称, 线 封 密 内

    11、 号学级年名姓 线 封 密 外 故选A【考点】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键二、多选题1、ACE【解析】【分析】根据二次函数图象的性质,结合表中数据,逐一分析判断即可【详解】解:A、由表中数据可知,二次函数图象过,选项正确;B、函数图象过,则知对称轴为,当时,由表中数据知,y随x的增大而减小;当时,y随x的增大而增大,所以开口向上,选项错误;C、因为函数的对称轴为,所以由函数对称性知,关于对称,选项正确;D、当时,y随x的增大而增大,选项错误;E、当y=0时,方程ax2+bx+c=0有两个不相等的实数根,选项正确故选:ACE【点睛】本题考查二次函数的图象性

    12、质,根据相关知识点解题是关键2、ABD【解析】【分析】根据题意可得点A(4,0)关于对称轴的对称点 ,从而得到当 时, ,再由 ,可得在对称轴右侧 随 的增大而增大,从而得到当 时, ;根据图象可得 , ,可得 ;再由 ,可得;然后根据P(6,y1)关于对称轴的对称点 ,可得当y1y2时,6m4,即可求解【详解】解:二次函数yax2+bx+c的图象经过点A(4,0),其对称轴为直线x1,点A(4,0)关于对称轴的对称点 ,即当 时, ,抛物线开口向上, ,在对称轴右侧 随 的增大而增大,当 时, ,故A正确;抛物线与 交于负半轴, ,对称轴为直线x1, , ,即 , ,故B正确; ,故C错误;

    13、P(6,y1)关于对称轴的对称点 ,当y1y2时,6m4,故D正确 线 封 密 内 号学级年名姓 线 封 密 外 故选:ABD【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质,并利用数形结合思想解答是解题的关键3、ABC【解析】【分析】(1)由图象可知抛物线与x轴的交点个数,从而确定相应的一元二次方程根的情况即可;(2)抛物线开口方向向上,即函数有最小值,从而知道选项是否正确;(3)根据图象分析出函数的对称轴,然后分析出关于对称轴的对称点,即可知道对应的一元二次方程的两个根;(4)根据抛物线开口方向和对称轴,判断分析两点离对称轴的距离,即可得出结论【详解】解:A、根据函

    14、数对称性,二次函数图象与x轴有两个交点,即对应的一元二次方程有两个不相等的实数根,此时,即,选项正确;B、抛物线开口方向向上,即函数有最小值,所以,选项正确;C、由函数图象知,对称轴为,所以点与关于对称轴对称,即关于x的一元二次方程的两根分别是和,选项正确;D、因为抛物线开口向上,对称轴为,离对称轴的距离大于离对称轴的距离,所以,所以选项错误故选:ABC【点睛】本题考查二次函数图象性质、二次函数与一元二次方程的关系,二次函数图象的对称性等相关知识点,牢记相关知识点并能灵活应用是解题的关键4、BD【解析】【分析】根据图象得出a,b,c的符号,即可判断A选项,由对称轴的位置即可判断B选项,由抛物线

    15、与x轴的交点个数即可判断C选项,由图象知x2和x0时y的值相等,由此可判断D选项【详解】解:抛物线的开口向下,a0,抛物线与y轴的交点在x轴上方,c0,抛物线的对称轴为直线x1,b2a0,abc0,故A选项不合题意,b2a,2a-b0,故B选项合题意,抛物线与x轴有两个交点,b24ac0,4acb20,C选项不合题意, 线 封 密 内 号学级年名姓 线 封 密 外 抛物线的对称轴为直线x1,x3和x0时,y的值相等,当x=-2时,y0,4a2b+c0,4a+c2b,D选项符合题意,故选:BD【点睛】本题考查了二次函数图象与系数的关系,其中a符号由抛物线的开口方向决定;当对称轴在y轴的左侧时,a

    16、与b同号;当对称轴在y轴的右侧时,a与b异号;c的符号由抛物线与y轴的交点决定;根的判别式的符号由抛物线与x轴交点个数决定;此外还要找出图象上的特殊点对应的函数值得正负进行判断5、BCD【解析】【分析】观察两个半圆的位置关系,再确定能否通过图象变换得到,以及旋转、平移的方法【详解】解:由图可知,图(1)先以直线AB为对称轴进行翻折,再向右平移1个单位,或先绕着点O旋转180,再向右平移1个单位,或绕着OB的中点旋转180即可得到图(2)故选BCD【点睛】本题考查了旋转、轴对称、平移的性质关键是根据变换图形的位置关系,确定变换规律三、填空题1、【解析】【分析】取AD的中点N连接EN,EC,GN,

    17、作EHCB交CB的延长线于H根据菱形的性质,可得ADB是等边三角形,从而得到AEN是等边三角形,可证得AEFNEG,进而得到点G的运动轨迹是射线NG,继而得到GD+GCGE+GCEC,在RtBEH和RtECH中, 由勾股定理,即可求解【详解】如图,取AD的中点N连接EN,EC,GN,作EHCB交CB的延长线于H四边形ABCD是菱形ADAB,A60,ADB是等边三角形,ADBD,AEED,ANNB,AEAN,A60, 线 封 密 内 号学级年名姓 线 封 密 外 AEN是等边三角形,AENFEG60,AEFNEG,EAEN,EFEG,AEFNEG(SAS),ENGA60,ANE60,GND180

    18、606060,点G的运动轨迹是射线NG,D,E关于射线NG对称,GDGE,GD+GCGE+GCEC,在RtBEH中,H90,BE1,EBH60,BHBE,EH,在RtECH中,EC,GD+GC,GD+GC的最小值为故答案为:【考点】本题主要考查了菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理等知识,熟练掌握菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,勾股定理等知识是解题的关键2、且【解析】【分析】由题意知,计算求解即可【详解】解:由题意知,解得故答案为:且【考点】本题考查了二次函数与轴的交点个数解题的关键在于熟练掌握二次函数与轴的交点个数3、【解析】【分析

    19、】根据关于的一元二次方程的一个解是,可以得到的值,然后将所求式子变形,再将的值代入,即可解答本题【详解】解:关于的一元二次方程的一个解是, 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:2020【考点】本题考查一元二次方程的解,解答本题的关键是明确一元二次方程的解的含义4、2【解析】【分析】利用二次函数图象上点的坐标特征可求出点A,B,C,D的坐标,由点A,D的坐标,利用待定系数法可求出直线AD的解析式,利用一次函数图象上点的坐标特征可求出点E的坐标,再利用二次函数图象上点的坐标特征可得出点P,Q的坐标,进而可求出线段PQ的长【详解】解:当y0时,x2+x+20,解得:x12,x24

    20、,点A的坐标为(2,0);当x0时,yx2+x+22,点C的坐标为(0,2);当y2时,x2+x+22,解得:x10,x22,点D的坐标为(2,2)设直线AD的解析式为ykx+b(k0),将A(2,0),D(2,2)代入ykx+b,得:解得:直线AD的解析式为yx+1当x0时,yx+11,点E的坐标为(0,1)当y1时,x2+x+21,解得:x11,x21+,点P的坐标为(1,1),点Q的坐标为(1+,1),PQ1+(1)2故答案为:2【考点】本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,利用二次函数图象上点的坐标特征求出点

    21、P,Q的坐标是解题的关键5、-2或 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据二次函数一般式的顶点坐标公式表示出顶点,再根据顶点在x轴上,建立等量关系求解即可【详解】解: 的顶点坐标为: 顶点在x轴上解得: 故答案为:或【考点】本题考查二次函数一般式的顶点坐标,掌握二次函数一般式的顶点坐标公式是解题关键四、解答题1、见解析.【解析】【分析】根据轴对称图形和旋转对称图形的概念作图即可得【详解】解:根据剪掉其中两个方格,使之成为轴对称图形;即如图所示:【点睛】本题主要考查利用旋转设计图案,解题的关键是掌握轴对称图形和旋转对称图形的概念2、(1);(2)不存在【解析】【分析】

    22、(1)根据根的判别式即可求出答案(2)根据根与系数的关系即可求出答案【详解】解:(1),;(2)由题意可知:x1+x2=2,x1x2=,k=,k=不符合题意,舍去, 线 封 密 内 号学级年名姓 线 封 密 外 k的值不存在【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练运用根与系数的关系以及根的判别式,本题属于基础题型3、(1);(2)顶点坐标是,对称轴是;(3)的面积为21,时,的取值范围是【解析】【分析】(1)直接利用待定系数法将已知点代入得出方程组求出答案;(2)直接利用配方法求出抛物线顶点坐标和对称轴即可;(3)首先求出抛物线与x轴的交点坐标,然后利用三角形面积公式和图像得

    23、出答案【详解】(1)二次函数的图象经过点、,解这个方程组,得,该二次函数的解析式是;(2),顶点坐标是;对称轴是;(3)二次函数的图象与轴交于,两点,解这个方程得:,即二次函数与轴的两个交点的坐标为,的面积由图像可得,当时,故时,的取值范围是【点睛】本题主要考查了待定系数法求函数表达式,求三角形面积,图像法求自变量求职范围,用配方法求抛物线顶点坐标和对称轴,求出函数表达式是解决问题的关键4、 (1);(2);(3)m的值为3或1或2或7;【解析】【分析】(1)根据一元二次方程的解求出OB和OC的长度,然后得到点B,点C坐标和OA的长度,进而得到点A坐标,最后使用待定系数法即可求出直线AC的解析

    24、式;(2)根据点A,点B坐标使用待定系数法求出直线AB的解析式,根据直线AB解析式和直线AC解析式求出点P,Q,D坐标,进而求出PQ和CD的长度,然后根据三角形面积公式求出S,最后对a的值 线 封 密 内 号学级年名姓 线 封 密 外 进行分类讨论即可;(3)根据MAB的直角顶点进行分类讨论,然后根据勾股定理求解即可(1)解:解方程得,线段OB,OC()的长是关于x的方程的两个根,OB1,OC6,CO2AO,OA3,设直线AC的解析式为,把点,代入得,解得,直线AC的解析式为;(2)解:设直线AB的解析式为y=px+q,把,代入直线AB解析式得,解得,直线AB的解析式为,PDx轴,垂足为D,P

    25、D与直线AB交于点Q,点P的横坐标为a,当点P与点A或点C重合时,即当a=0或时,此时S=0,不符合题意,当时,当时,当时,;(3)解:,当MAB=90时,解得,当ABM=90时, 线 封 密 内 号学级年名姓 线 封 密 外 解得m=7,当AMB=90时,解得,m的值为3或1或2或7【点睛】本题考查解一元二次方程、待定系数法求一次函数解析式、三角形面积公式、勾股定理,正确应用分类讨论思想是解题关键5、(1);(2)当售价为70元时,商家所获利润最大,最大利润是4500元【解析】【分析】(1)利用待定系数法分段求解函数解析式即可;(2)分别求出当时与当时的销售利润解析式,利用二次函数的性质即可求解【详解】解:(1)当时,设,将和代入,可得,解得,即;当时,设,将和代入,可得,解得,即;(2)当时,销售利润,当时,销售利润有最大值,为4000元;当时,销售利润,该二次函数开口向上,对称轴为,当时位于对称轴右侧,当时,销售利润有最大值,为4500元;,当售价为70元时,商家所获利润最大,最大利润是4500元【点睛】本题考查一次函数的应用、二次函数的性质,根据图象列出解析式是解题的关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年人教版九年级数学上册期中综合测评试题 卷(Ⅱ)(含答案详解).docx
    链接地址:https://www.ketangku.com/wenku/file-695348.html
    相关资源 更多
  • 专题 01中国文化读写专项:中国概况 中国简介- 2024年高考英语常考中国文化读写专练 素材积累.docx专题 01中国文化读写专项:中国概况 中国简介- 2024年高考英语常考中国文化读写专练 素材积累.docx
  • 专题 01 英美文化阅读理解专项:移民之国 早期美国 印第安人-2024年高考英语常考英美文化阅读专练 素材积累.docx专题 01 英美文化阅读理解专项:移民之国 早期美国 印第安人-2024年高考英语常考英美文化阅读专练 素材积累.docx
  • 专题 01 生物多样性保护--2023年高考英语外刊时文精读精练.docx专题 01 生物多样性保护--2023年高考英语外刊时文精读精练.docx
  • 专题 01 推断题(下)-【尖子生训练营】2022年初中化学尖子生选拔专题训练(解析版).docx专题 01 推断题(下)-【尖子生训练营】2022年初中化学尖子生选拔专题训练(解析版).docx
  • 专题 01 推断题(下)-【尖子生训练营】2022年初中化学尖子生选拔专题训练(原卷版).docx专题 01 推断题(下)-【尖子生训练营】2022年初中化学尖子生选拔专题训练(原卷版).docx
  • 专题 01 单项选择【考题猜想 】 -2023-2024学年七年级英语上学期期末考末大串讲(人教版)原卷版.docx专题 01 单项选择【考题猜想 】 -2023-2024学年七年级英语上学期期末考末大串讲(人教版)原卷版.docx
  • 专题 01申请信 (应用文写作)-2024年新高考英语一轮复习练小题刷大题提能力(解析版).docx专题 01申请信 (应用文写作)-2024年新高考英语一轮复习练小题刷大题提能力(解析版).docx
  • 专题 01构词法之组合练-2024年新高考英语一轮复习练小题刷大题提能力(原卷版).docx专题 01构词法之组合练-2024年新高考英语一轮复习练小题刷大题提能力(原卷版).docx
  • 专题牛一、摩擦力与二力平衡综合问题必刷题-2022-2023学年八年级下册物理《考点•题型 •技巧》精讲与精练高分突破专题系列(人教版).docx专题牛一、摩擦力与二力平衡综合问题必刷题-2022-2023学年八年级下册物理《考点•题型 •技巧》精讲与精练高分突破专题系列(人教版).docx
  • 专项集训8力学实验题-备战2022年中考物理热门专项集训.docx专项集训8力学实验题-备战2022年中考物理热门专项集训.docx
  • 专项讲解虚拟语气.docx专项讲解虚拟语气.docx
  • 专项训练(四)有关气体制取的题型(解析版).docx专项训练(四)有关气体制取的题型(解析版).docx
  • 专项训练(五)绿色植物的三大作用(原卷版).docx专项训练(五)绿色植物的三大作用(原卷版).docx
  • 专项训练(二)有关化学式的计算题型(原卷版).docx专项训练(二)有关化学式的计算题型(原卷版).docx
  • 专项训练(三)有关化学方程式的计算题型(原卷版).docx专项训练(三)有关化学方程式的计算题型(原卷版).docx
  • 专项训练(一) 电磁继电器 电磁铁(解析版).docx专项训练(一) 电磁继电器 电磁铁(解析版).docx
  • 专项训练(一) 电磁继电器 电磁铁(原卷版).docx专项训练(一) 电磁继电器 电磁铁(原卷版).docx
  • 专项训练教师版.docx专项训练教师版.docx
  • 专项训练学生版.docx专项训练学生版.docx
  • 专项训练四 立体几何(考点2 利用空间向量求空间角)(原卷版).docx专项训练四 立体几何(考点2 利用空间向量求空间角)(原卷版).docx
  • 专项训练五 解析几何(考点3 解析几何中的定点、定值问题)(原卷版).docx专项训练五 解析几何(考点3 解析几何中的定点、定值问题)(原卷版).docx
  • 专项训练五 解析几何(考点1 解析几何中的轨迹方程的求法)(解析版).docx专项训练五 解析几何(考点1 解析几何中的轨迹方程的求法)(解析版).docx
  • 专项训练五 解析几何(考点1 解析几何中的轨迹方程的求法)(原卷版).docx专项训练五 解析几何(考点1 解析几何中的轨迹方程的求法)(原卷版).docx
  • 专项训练三 概率与统计(考点4 统计与概率的综合应用)(解析版).docx专项训练三 概率与统计(考点4 统计与概率的综合应用)(解析版).docx
  • 专项训练三 概率与统计(考点4 统计与概率的综合应用)(原卷版).docx专项训练三 概率与统计(考点4 统计与概率的综合应用)(原卷版).docx
  • 专项训练4 化学用语.docx专项训练4 化学用语.docx
  • 专项训练3酸 碱 盐综合训练.docx专项训练3酸 碱 盐综合训练.docx
  • 专项训练3 化合价与化学式.docx专项训练3 化合价与化学式.docx
  • 专项训练2金属活动性顺序及应用.docx专项训练2金属活动性顺序及应用.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1