2022年人教版九年级数学上册期中考专项测评试题 卷(Ⅲ)(解析卷).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年人教版九年级数学上册期中考专项测评试题 卷解析卷 2022 年人教版 九年级 数学 上册 期中 专项 测评 试题 解析
- 资源描述:
-
1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中考专项测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、已知x1,x2是一元二次方程2x23x5的两个实数根,下列结论错
2、误的是()A23x15B(x1x2)(2x12x23)0Cx1x2Dx1x22、二次函数的顶点坐标为,图象如图所示,有下列四个结论:;,其中结论正确的个数为()A个B个C个D个3、关于x的一元二次方程根的情况,下列说法正确的是()A有两个不相等的实数根B有两个相等的实数根C无实数根D无法确定4、方程y2-a有实数根的条件是()Aa0Ba0Ca0Da为任何实数5、如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转后得到正方形,依此方式,绕点O连续旋转2019次得到正方形,那么点的坐标是()ABCD二、多选题(5小题,每小题4分,共计20分)1、如图,O是正ABC内一点,OA3,
3、OB4,OC5,将线段BO以点B为旋转中心逆时针旋转60得到线段BO,下列结论中正确的结论是( )ABOA可以由BOC绕点B逆时针旋转60得到B点O与O的距离为4CAOB150DS四边形AOBO6+3 线 封 密 内 号学级年名姓 线 封 密 外 ESAOC+SAOB6+2、如图是二次函数图象的一部分,过点,对称轴为直线则错误的有()ABCD3、二次函数y=ax2+bx+c(a0)的部分图象如图所示,图象过点(1,0),对称轴为直线x=2,下列结论中正确的有()A4a+b=0B9a+c3bC7a3b+2c0D若点A(3,y1)、点B(,y2)、点C(7,y3)在该函数图象上,则y1y3y2E若
4、方程a(x+1)(x5)=3的两根为x1和x2,且x1x2,则x115x24、下列关于x的方程没有实数根的是()Ax2-x10Bx2x10C(x-1)(x2)0D(x-1)2105、若关于的一元二次方程的两个实数根分别是,且满足,则的值不可能为()A或BCD不存在第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图有一抛物线形的拱桥,拱高10米,跨度为40米,则该抛物线的表达式为_.2、已知一元二次方程ax2+bx+c=0(a0),下列结论:若方程两根为-1和2,则2a+c=0;若ba+c,则方程有两个不相等的实数根;若b=2a+3c,则方程有两个不相等的实数根;若m是
5、方程的一个根,则一定有b2-4ac=(2am+b)2成立其中结论正确的序号是_3、若一元二次方程(b,c为常数)的两根满足,则符合条件的一个方程为_4、如图抛物线与轴相交于点,与轴相交于点,则的面积为_5、如图,在平面直角坐标系中,矩形的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段上一点,将沿翻折,O点恰好落在对角线上的点P处,反比例函数经过点B二次函数的图象经过、G、A三点,则该二次函数的解析式为_(填一般式) 线 封 密 内 号学级年名姓 线 封 密 外 四、解答题(5小题,每小题8分,共计40分)1、某种病毒传播非常快,如果1人被感染,经过2轮感染后就会有81人被感
6、染(1)每轮感染中平均1人会感染几人?(2)若病毒得不到有效控制,3轮感染后,被感染的人会不会超过700人?2、解关于y的方程:by21y2+23、如图,抛物线与轴交于两点,与轴交于点,且,.(1)求抛物线的表达式;(2)点是抛物线上一点在抛物线的对称轴上,求作一点,使得的周长最小,并写出点的坐标;连接并延长,过抛物线上一点(点不与点重合)作轴,垂足为,与射线交于点,是否存在这样的点,使得,若存在,求出点的坐标;若不存在,请说明理由4、在数学活动课上,王老师要求学生将图1所示的33正方形方格纸,剪掉其中两个方格,使之成为轴对称图形规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为
7、同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个33的正方形方格画一种,例图除外)5、用适当的方法解下列方程:(1)(2)-参考答案-一、单选题1、D【解析】【分析】根据一元二次方程的根的判别式、一元二次方程根的定义、一元二次方程根与系数的关系逐一进行分析即可【详解】解:x1、x2是一元二次方程2x2-3x=5的两个实数根,故A正确,不符合题意; 线 封 密 内 号学级年名姓 线 封 密 外 这里a=2,b=-3,c=-5,故B、C正确,不符合题意,D错误,符合题意故选:D【考点】本题考查了一元二次方程根的意义,根与系数的关系等,熟练
8、掌握根与系数的关系,是解题的关键2、A【解析】【分析】根据二次函数的性质和已知条件,对每一项逐一进行判断即可【详解】解:由图像可知a0,c0,对称轴在正半轴,0,b0,故正确;当x=2时,y0,故,故正确;函数解析式为:y=a(x-1)2+2=ax2-2ax+a+2假设成立,结合解析式则有a+2,解得a,故,正确;故选:A【考点】本题考查了二次函数图象与系数的关系,结合图象,运用所学知识是解题关键3、A【解析】【分析】先计算判别式,再进行配方得到=(k-1)2+4,然后根据非负数的性质得到0,再利用判别式的意义即可得到方程总有两个不相等的实数根【详解】=(k-3)2-4(1-k)=k2-6k+
9、9-4+4k=k2-2k+5=(k-1)2+4,(k-1)2+40,即0,方程总有两个不相等的实数根故选:A【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查的是根的判别式,一元二次方程ax2+bx+c=0(a0)的根与=b2-4ac有如下关系:当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0时,方程无实数根上面的结论反过来也成立4、A【解析】【分析】根据平方的非负性可以得出a0,再进行整理即可【详解】解:方程y2a有实数根,a0(平方具有非负性),a0;故选:A【考点】此题考查了直接开平方法解一元二次方程,关键是根据已知条件得出a05、A【解析】【分析】
10、根据旋转的性质分别求出点A1、A2、A3、的坐标,继而发现8次为一个循环,用2019除以8,看余数即可求得答案.【详解】四边形OABC是正方形,且,将正方形OABC绕点O逆时针旋转后得到正方形,点A1的横坐标为1,点A1的纵坐标为1,继续旋转则,A4(0,-1),A5,A6(-1,0),A7,A8(0,1),A9,发现是8次一循环,所以余3,点的坐标为,故选A【考点】本题考查了旋转的性质,规律题点的坐标的变化规律,通过分析正确得出坐标的变化规律是解题的关键.二、多选题1、ABCE【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 证明可判断 证明是等边三角形,可判断 利用是等边三角
11、形,证明可判断 由是等边三角形,可得四边形的面积,可判断如图,将绕点逆时针旋转与重合,对应,同理可得:是边长为的等边三角形,是边长为的直角三角形,从而可判断【详解】解:由题意得:为等边三角形, BOA可以由BOC绕点B逆时针旋转60得到,故符合题意;如图,连接,由 是等边三角形,则点O与O的距离为4,故符合题意; 故符合题意;如图,过作于 是等边三角形, S四边形AOBO 故不符合题意;如图,将绕点逆时针旋转与重合,对应,同理可得:是边长为的等边三角形,是边长为的直角三角形, 线 封 密 内 号学级年名姓 线 封 密 外 同理可得: 故符合题意;故选:【点睛】本题考查的是等边三角形的判定与性质
12、,旋转的性质,勾股定理与勾股定理的逆定理的应用,全等三角形的判定与性质,熟练的做出正确的辅助线是解题的关键.2、BD【解析】【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴x=1可得2a+b的符号;再由根的判别式可得,根据二次函数的对称性进而对所得结论进行判断【详解】解:A、由抛物线的开口向下知a0,对称轴为直线,得2a=b,a、b同号,即b0;故本选项正确,不符合题意;B、对称轴为,得2a=b,2a+b=4a,且a0,2a+b0;故本选项错误,符合题意;C、从图象知,该函数与x轴有两个不同的交点,所以根的判别式,即;故本选项正确,不符合题意;D、3x1
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
