2022年北师大版八年级数学上册第一章勾股定理重点解析试题(详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 北师大 八年 级数 上册 第一章 勾股定理 重点 解析 试题 详解
- 资源描述:
-
1、北师大版八年级数学上册第一章勾股定理重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,cm,cm,点、分别在、边上现将沿翻折,使点落在点处连接,则长度的最小值为()A0B2C4D62、如
2、图,点,在直线的同侧,到的距离,到的距离,已知,是直线上的一个动点,记的最小值为,的最大值为,则的值为()A160B150C140D1303、如图所示,将一根长为24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在外面的长为hcm,则h的取值范围是()A0h11B11h12Ch12D0h124、若直角三角形的三边长分别为2,4,x,则x的可能值有()A1个B2个C3个D4个5、在ABC中,A,B,C的对边分别记为a,b,c,下列结论中不正确的是()A如果a2=b2c2,那么ABC是直角三角形且A=90B如果A:B:C=1:2:3,那么ABC是直角三角形C如果,那么ABC
3、是直角三角形D如果,那么ABC是直角三角形6、在自习课上,小芳同学将一张长方形纸片ABCD按如图所示的方式折叠起来,她发现D、B两点均落在了对角线AC的中点O处,且四边形AECF是菱形若AB3cm,则阴影部分的面积为()A1cm2B2cm2Ccm2Dcm27、为外一点,与相切于点,则的长为()ABCD8、在ABC中,A,B,C的对边分别记为a,b,c,下列结论中不正确的是()A如果AB=C,那么ABC是直角三角形B如果a2=b2c2,那么ABC是直角三角形,且C=90C如果ABC=132,那么ABC是直角三角形D如果a2b2c2=91625,那么ABC是直角三角形9、我国古代数学著作九章算术中
4、有这样一个问题:“今有方池一丈,葭生其中央,出水一 尺,引葭赴岸,适与岸齐水深、葭长各几何? ”其大意是:如图,有一个水池,水面是 一个边长为 10 尺 (丈、尺是长度单位,1 丈10 尺) 的正方形,在水池正中央有一根芦苇, 它高出水面 1 尺如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面水 的深度与这根芦苇的长度分别是多少?若设这跟芦苇的长度为 x 尺,根据题意,所列方程正 确的是()A102(x1)2x2B102(x1)2 (x1)2C52(x1)2x2D52(x1)2 (x1)210、有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正
5、方形围成的三角形是直角三角形,再经过一次“生长”后,变成了上图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是()A1B2021C2020D2019第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在离水面高度为8米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为17米,几分钟后船到达点D的位置,此时绳子CD的长为10米,问船向岸边移动了_米2、已知a、b、c是一个三角形的三边长,如果满足,则这个三角形的形状是_3、九章算术中有一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐问
6、水深,葭长各几何?”题意是:有一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B(如图)则芦苇长_尺4、对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC、BD交于点O若AD=3,BC=5,则_5、如图,在中,分别以,边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当,时,阴影部分的面积为_三、解答题(5小题,每小题10分,共计50分)1、如图,已知和中,点C在线段BE上,连接DC交AE于点O(1)DC与BE有怎样的位置关系?证
7、明你的结论;(2)若,求DE的长2、如图是一个长方形的大门,小强拿着一根竹竿要通过大门他把竹竿竖放,发现竹竿比大门高1尺;然后他把竹竿斜放,竹竿恰好等于大门的对角线的长已知大门宽4尺,请求出竹竿的长3、阅读下面材料:小明遇到这样一个问题:MBN30,点A为射线BM上一点,且AB4,点C为射线BN上动点,连接AC,以AC为边在AC右侧作等边三角形ACD,连接BD当ACBN时,求BD的长小明发现:以AB为边在左侧作等边三角形ABE,连接CE,能得到一对全等的三角形,再利用EBC90,从而将问题解决(如图1)请回答:(1)在图1中,小明得到的全等三角形是 ;BD的长为 (2)动点C在射线BN上运动,
8、当运动到AC时,求BD的长;(3)动点C在射线BN上运动,求ABD周长最小值4、有一只喜鹊在一棵高3米的小树的树梢上觅食,它的巢筑在距离该树24米,高为14米的一棵大树上,且巢离大树顶部为1米,这时,它听到巢中幼鸟求助的叫声,立刻赶过去,如果它的飞行速度为每秒5米,那么它至少几秒能赶回巢中?5、如图,是一块草坪,已知AD=12m,CD=9m,ADC=90,AB=39m,BC=36m,求这块草坪的面积-参考答案-一、单选题1、C【解析】【分析】当H落在AB上,点D与B重合时,AH长度的值最小,根据勾股定理得到AB=10cm,由折叠的性质知,BH=BC=6cm,于是得到结论【详解】解:当H落在AB
9、上,点D与B重合时,AH长度的值最小,C=90,AC=8cm,BC=6cm,AB=10cm,由折叠的性质知,BH=BC=6cm,AH=AB-BH=4cm故选:C【考点】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键2、A【解析】【分析】作点A关于直线MN的对称点,连接交直线MN于点P,则点P即为所求点,过点作直线,在根据勾股定理求出线段的长,即为PA+PB的最小值,延长AB交MN于点,此时,由三角形三边关系可知,故当点P运动到时最大,过点B作由勾股定理求出AB的长就是的最大值,代入计算即可得【详解】解:如图所示,作点A关于直线MN的对称点,连接交直线MN于点P,则点P
10、即为所求点,过点作直线,在中,根据勾股定理得,即PA+PB的最小值是;如图所示,延长AB交MN于点,当点P运动到点时,最大,过点B作,则, ,在中,根据勾股定理得,即,故选A【考点】本题考查了最短线路问题和勾股定理,解题的关键是熟知两点之间线段最短及三角形的三边关系3、B【解析】【分析】根据题意画出图形,先找出h的值为最大和最小时筷子的位置,再根据勾股定理解答即可【详解】解:当筷子与杯底垂直时h最大,h最大241212cm当筷子与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB13cm,h241311cmh的取值范围是11cmh12cm故选:B【考点】本题考查了勾股定理的实际应用问题,解
11、答此题的关键是根据题意画出图形找出何时h有最大及最小值,同时注意勾股定理的灵活运用,有一定难度4、B【解析】【详解】分析:x可为斜边也可为直角边,因此解本题时要对x的取值进行讨论解答:解:当x为斜边时,x2=22+42=20,所以x=2;当4为斜边时,x2=16-4=12,x=2故选B点评:本题考查了勾股定理的应用,注意要分两种情况讨论5、A【解析】【分析】根据直角三角形的判定和勾股定理的逆定理解答即可【详解】解:A、如果a2=b2-c2,即b2=a2+c2,那么ABC是直角三角形且B=90,选项错误,符合题意;B、如果A:B:C=1:2:3,由A+B+C=180,可得A=90,那么ABC是直
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
