分享
分享赚钱 收藏 举报 版权申诉 / 25

类型2022年强化训练人教版九年级数学上册期中测评试题 卷(Ⅱ)(解析卷).docx

  • 上传人:a****
  • 文档编号:701951
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:25
  • 大小:448.60KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年强化训练人教版九年级数学上册期中测评试题 卷解析卷 2022 强化 训练 人教版 九年级 数学 上册 期中 测评 试题 解析
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、二次函数y=ax2+bx+c的图象如图所示,则该二次函数的顶点坐标为(

    2、)A(1,3)B(0,1)C(0,3)D(2,1)2、二次函数的图象如图所示,对称轴是直线下列结论:;(为实数)其中结论正确的个数为()A1个B2个C3个D4个3、二次函数yax2+bx+c的部分图象如图所示,由图象可知该抛物线与x轴的交点坐标是()A(1,0)和(5,0)B(1,0)和(5,0)C(0,1)和(0,5)D(0,1)和(0,5)4、若关于x的二次函数yax2+bx的图象经过定点(1,1),且当x1时y随x的增大而减小,则a的取值范围是()ABCD5、方程y2-a有实数根的条件是()Aa0Ba0Ca0Da为任何实数二、多选题(5小题,每小题4分,共计20分)1、抛物线y=ax2+

    3、bx+c(a0)的顶点为D(1,2),与x轴的一个交点A在点(3,0)和(2,0)之间,其部分图象如图,则以下结论中正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 Ab24ac0B当x1时,y随x增大而减小Ca+b+c0D若方程ax2+bx+c-m=0没有实数根,则m2E3a+c02、已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点的坐标分别为(1,0),(3,0)则下列结论中正确的有()Aabc0Bb24ac0C当x1x20时,y1y2D当1x3时,y03、如图,抛物线过点,对称轴是直线下列结论正确的是()ABC若关于x的方程有实数根,则D若和是抛物线上的两点,

    4、则当时,4、下面的图案中,是中心对称图形的有()ABCD5、下列各组图形中,由左边变成右边的图形,分别进行了平移、旋转、轴对称、中心对称等变换,其中进行了旋转变换的是()组,进行轴对称变换的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分) 线 封 密 内 号学级年名姓 线 封 密 外 1、已知抛物线与x轴的一个交点为,则代数式的值为_2、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为10米),围成中间隔有一道篱笆的长方形花圃设花圃的宽AB为x米,面积为S平方米则S与x的函数关系式是_,自变量x的取值范围是_3、关于的方程,k=_时,方程有实数根4、已

    5、知二次函数与x轴有两个交点,把当k取最小整数时的二次函数的图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象,若新图象与直线有三个不同的公共点,则m的值为_5、已知方程的一根为,则方程的另一根为_四、解答题(5小题,每小题8分,共计40分)1、解下列方程:(1);(2)2、在平面直角坐标系中,抛物线的顶点为P,且与y轴交于点A,与直线交于点B,C(点B在点C的左侧).(1)求抛物线的顶点P的坐标(用含a的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.当时,请直接写出“W区域”内的整点个数;当“W区域”内恰

    6、有2个整点时,结合函数图象,直接写出a的取值范围.3、关于x的一元二次方程kx2+(k+1)x+0(1)当k取何值时,方程有两个不相等的实数根?(2)若其根的判别式的值为3,求k的值及该方程的根4、已知m是方程的一个根,试求的值.5、解下列方程:(1);(2)-参考答案-一、单选题1、D 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据抛物线与轴的两个交点坐标确定对称轴后即可确定顶点坐标【详解】解:观察图象发现图象与轴交于点和,对称轴为,顶点坐标为,故选:D【考点】本题考查了二次函数的性质及二次函数的图象的知识,解题的关键是根据交点坐标确定对称轴,难度不大2、C【解析】【分析

    7、】由抛物线开口方向得到,对称轴在轴右侧,得到与异号,又抛物线与轴正半轴相交,得到,可得出,选项错误;把代入中得,所以正确;由时对应的函数值,可得出,得到,由,得到,选项正确;由对称轴为直线,即时,有最小值,可得结论,即可得到正确【详解】解:抛物线开口向上,抛物线的对称轴在轴右侧,抛物线与轴交于负半轴,错误;当时,把代入中得,所以正确;当时,即,所以正确;抛物线的对称轴为直线,时,函数的最小值为,即,所以正确故选C【考点】本题考查了二次函数图象与系数的关系:二次项系数决定抛物线的开口方向和大小当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时,对称

    8、轴在轴左;当与异号时,对称轴在轴右常数项决定抛物线与轴交点:抛物线与轴交于抛物线与轴交点个数由判别式确定:时,抛物线与轴有2个交点;时,抛物线与轴有1个交点;时,抛物线与轴没有交点3、A 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】首先根据图像得出抛物线的对称轴和其中一个交点坐标,然后根据二次函数的对称性即可求得另一个交点坐标【详解】解:由图像可得,抛物线的对称轴为,与x轴的一个交点坐标为(5,0),抛物线与x轴的两个交点关于对称轴对称,抛物线与x轴的另一个交点坐标为(1,0),故选:A【考点】此题考查了二次函数与x轴的交点,二次函数的对称性,解题的关键是根据二次函数的对称性

    9、求出与x轴的另一个交点坐标4、D【解析】【分析】根据题意开口向上,且对称轴1,ab1,即可得到1,从而求解【详解】由二次函数yax2+bx可知抛物线过原点,抛物线定点(1,1),且当x-1时,y随x的增大而减小,抛物线开口向上,且对称轴1,ab1,a0,b1a,1,故选:D【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,根据题意得关于a的不等式组是解题的关键5、A【解析】【分析】根据平方的非负性可以得出a0,再进行整理即可【详解】解:方程y2a有实数根,a0(平方具有非负性),a0;故选:A【考点】此题考查了直接开平方法解一元二次方程,关键是根据已知条件得出a0 线 封

    10、 密 内 号学级年名姓 线 封 密 外 二、多选题1、BCDE【解析】【分析】利用图象信息,以及二次函数的性质即可一一判断【详解】二次函数与x轴有两个交点,b-4ac0,故A错误,观察图象可知:当x-1时,y随x增大而减小,故B正确,抛物线与x轴的另一个交点为在(0,0)和(1,0)之间,x=1时,y=a+b+c0,故C正确,当m2时,抛物线与直线y=m没有交点,方程ax+bx+c-m=0没有实数根,故D正确,对称轴x=-1= ,b=2a,a+b+c0,3a+c0,故E正确,故答案为BCDE【点睛】本题考查了二次函数图象与系数的关系,根的判别式、抛物线与x轴的交点等知识,解题的关键是灵活运用所

    11、学知识解决问题,属于中考常考题型2、ABC【解析】【分析】首先根据对称轴公式结合a的取值可判定出b0,根据a、b、c的正负即可判断出A的正误;抛物线与x轴有两个不同的交点,则=b2-4ac0,故B正确;根据二次函数的性质即可判断出C的正误;由图象可知:当-1x3时,y0,即可判断出D的正误【详解】解:根据图象可得:抛物线开口向上,则a0抛物线与y交与负半轴,则c0,对称轴:x=-0,b0,abc0,故A正确;它与x轴的两个交点分别为(-1,0),(3,0),则=b2-4ac0,故B正确抛物线与x轴的两个交点分别为(-1,0),(3,0),对称轴是直线x=1,抛物线开口向上,当x1时,y随x的增

    12、大而减小,当x1x20时,y1y2;故C正确;由图象可知:当-1x3时,y0,故D错误;故正确的有ABC故选ABC【点睛】此题主要考查了二次函数图象与系数的关系,关键是熟练掌握二次项系数a决定抛物线的开口方向,当a0时,抛物线向上开口;当a0时,抛物线向下开口;一次项系数b和二次项系数a共 线 封 密 内 号学级年名姓 线 封 密 外 同决定对称轴的位置:当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时(即ab0),对称轴在y轴右(简称:左同右异)常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c)3、D【解析】【详解】解:A.抛物线开口向下,a0,对称轴在y轴左侧,a、b同号,

    13、b0,abc0,故此选项不符合题意;B.(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b),抛物线过点,对称轴是直线,抛物线与x轴另一交点为(2,0), 当x=2时,y=ax2+bx+c=4a+c+2b=0,(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b)=0,(4a+c)2=4b2,故此选项不符合题意;C.,b=2a,当x=2时,y=ax2+bx+c=4a+c+2b=0,4a+c+4a=0,c=-8a,关于x的方程有实数根,=b2-4a(c-m)0,(2a)2-4a(-8a-m) 0,a|x2+1|,点(x1,y1)到对称轴的距离大于点(x2,y2) 到对称轴的

    14、距离,y1y2,故此选项符合题意;故选:D【点睛】本题考查二次函数图象与系数的关系,二次函数的性质,二次函数与一元二次方程的联系,熟练掌握二次函数图象性质是解题的关键4、ABCD【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据中心对称图形的概念依次分析即可【详解】解:A、B、C、D都是中心对称图形,都能绕对角线的交点旋转180度与自身完全重合故选ABCD【点睛】本题考查的是中心对称图形,解答本题的关键是熟练掌握如果把一个图形绕某一点旋转180,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形5、AC【解析】【分析】旋转是一个图形绕着一个定点旋转一定的角度,各对

    15、应点之间的位置关系也保持不变;在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴据此即可解答【详解】由旋转是一个图形绕着一个定点旋转一定的角度,各对应点之间的位置关系也保持不变,分析可得,进行旋转变换的是A;左边图形能轴对称变换得到右边图形,则进行轴对称变换的是C;根据平移是将一个图形从一个位置变换到另一个位置,各对应点间的连线平行,分析可得,D是平移变化;故答案为:A;C【点睛】本题考查了几何变换的定义,注意结合几何变换的定义,分析图形的位置的关系,特别是对应点之间的关系三、填空题1、2019【解析】【分析】先将点(m,0)代入函

    16、数解析式,然后求代数式的值即可得出结果【详解】解:将(m,0)代入函数解析式得,m2-m-1=0,m2-m=1,-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019故答案为:2019【考点】本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m,0)代入函数解析式得到有关m的代数式的值2、 S3x224x x8【解析】【详解】可先用篱笆的长表示出BC的长,然后根据矩形的面积=长宽,得出S与x的函数关系式,并根据墙的最大可用长度为10米,列不等式组即可得出自变量的取值范围解:由题可知,花圃的宽AB为x米,则BC为(243x)米.S=x(243x)=3x

    17、2+24x. 线 封 密 内 号学级年名姓 线 封 密 外 0243x10,解得x8,故答案为S3x224x,x8.3、【解析】【分析】由于最高次项前面的系数不确定,所以进行分类讨论:当时,直接进行求解;当时,方程为一元二次方程,利用根的判别式,确定k的取值范围,最后综合即可求出满足题意的k的取值范围【详解】解:当时,方程化为:,解得:,符合题意;当时,方程有实数根,即,解得:,且;综上所述,当时,方程有实数根,故答案为:【考点】题目主要考查方程的解的情况,包括一元一次方程及一元二次方程的求解,分情况讨论方程的解是解题关键4、1或【解析】【分析】先运用根的判别式求得k的取值范围,进而确定k的值

    18、,得到抛物线的解析式,再根据折叠得到新图像的解析式,可求出函数图象与x轴的交点坐标,画出函数图象,可发现,若直线与新函数有3个交点,可以有两种情况:过交点(-1,0),根据待定系数法可得m的值;不过点(一1,0),与相切时,根据判别式解答即可【详解】解:函数与x轴有两个交点,解得,当k取最小整数时,抛物线为,将该二次函数图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象,所以新图象的解析式为(或): 线 封 密 内 号学级年名姓 线 封 密 外 因为为的,所以它的图象从左到右是上升的,当它与新图象有3个交点时它一定过,把代入得所以,与相切时,图象有三个交点,解得故答案

    19、为:1或【考点】本题主要考查了二次函数图象与几何变换、待定系数法求函数解析式等知识点,掌握分类讨论和直线与抛物线相切时判别式等于零是解答本题的关键5、【解析】【分析】设方程的另一个根为c,再根据根与系数的关系即可得出结论【详解】解:设方程的另一个根为c,故答案为【考点】本题考查的是根与系数的关系,熟记一元二次方程根与系数的关系是解答此题的关键四、解答题1、 (1),(2),【解析】【分析】(1)将分解因式得到(x-2)(x-4)=0,得到x-2=0,x-4=0,解得,;(2)将化简得到,分解因式得到(x-3)(x+1)=0,得到x-3=0,x+1=0,求出,(1),(x-2)(x-4)=0,x

    20、-2=0,x-4=0,x=2或x=4,;(2) 线 封 密 内 号学级年名姓 线 封 密 外 (2),(x-3)(x+1)=0,x-3=0,x+1=0,x=3或x=-1,【点睛】本题考查了解一元二次方程,解决问题的关键是把方程化成一般形式,用分解因式的方法解答2、(1)顶点P的坐标为;(2) 6个; ,【解析】【分析】(1)由抛物线解析式直接可求;(2)由已知可知A(0,2),C(2+ ,-2),画出函数图象,观察图象可得;分两种情况求:当a0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,a= ,则a1;当a0时,抛物线定点经过(2,2)时,a=-1,抛物线定点经过(

    21、2,1)时,a=-,则-1a-【详解】解:(1)y=ax2-4ax+2a=a(x-2)2-2a, 顶点为(2,-2a);(2)如图,a=2,y=2x2-8x+2,y=-2,A(0,2),C(2+,-2),有6个整数点;当a0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,; 当时,抛物线顶点经过点(2,2)时,;抛物线顶点经过点(2,1)时,; 综上所述:,【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质是解题的关键 线 封 密 内 号学级年名姓 线 封 密 外 3、(1)且;(2)【解析】【分析】(1)由方程有两个不相等的实数根,得到,列不等式结合,

    22、从而可得答案;(2)利用 列方程求解 再把的值代入原方程,解方程即可得到答案【详解】解:(1)该方程的判别式为:,方程有两个不相等的实数根,2k+10,解得,又该方程为一元二次方程,k的取值范围为:且(2)由题意得2k+13解得k1,原方程为: 解得:【点睛】本题考查的是一元二次方程的根的判别式,一元二次方程的解法,掌握一元二次方程根的判别式与公式法解一元二次方程是解题的关键4、2015【解析】【分析】先根据一元二次方程的解的定义得到,变形有或,再利用整体思想进行计算【详解】解:m是方程的一个根,代入即得.或.【点睛】本题考查了一元二次方程的解的定义,解题的关键是适当选择整体代入法,使得解答变得简单.5、(1),;(2),【解析】【分析】(1)确定公式中的a,b,c的值,计算判别式的值验证方程是否有根,若有解,将a,b,c的值代入求根公式即可(2)利用因式分解法解一元二次方程即可得【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:(1),a=3,b=4,c=1, ,;(2)【点睛】本题考查了解一元二次方程,主要解法包括:直接开平方法、配方法、公式法、因式分解法、换元法等,熟练掌握各解法公式法掌握用于一般式,确定a、b、c的值,然后检验方程是否有解,若有解代入公式计算解决问题,因式分解法适合特殊的一元二次方程,要针对不同的方程选取恰当的方法是解题关键

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年强化训练人教版九年级数学上册期中测评试题 卷(Ⅱ)(解析卷).docx
    链接地址:https://www.ketangku.com/wenku/file-701951.html
    相关资源 更多
  • 九年级历史下册第五单元“冷战”后的世界专题四世界政治格局的演变练习北师大版.docx九年级历史下册第五单元“冷战”后的世界专题四世界政治格局的演变练习北师大版.docx
  • 九年级历史下册第五单元“冷战”后的世界专题五现代科技文化与经济全球化练习北师大版.docx九年级历史下册第五单元“冷战”后的世界专题五现代科技文化与经济全球化练习北师大版.docx
  • 九年级历史下册第五单元“冷战”后的世界专题三社会主义国家的建立和发展练习北师大版.docx九年级历史下册第五单元“冷战”后的世界专题三社会主义国家的建立和发展练习北师大版.docx
  • 九年级历史下册第二单元第二次工业革命和近代科学文化第6课工业化国家的社会变化英国工业革命时期的城市病素材新人教版20191205336.docx九年级历史下册第二单元第二次工业革命和近代科学文化第6课工业化国家的社会变化英国工业革命时期的城市病素材新人教版20191205336.docx
  • 九年级历史下册第二单元第二次工业革命和近代科学文化第5课第二次工业革命诺贝尔奖相关介绍素材新人教版20191205339.docx九年级历史下册第二单元第二次工业革命和近代科学文化第5课第二次工业革命诺贝尔奖相关介绍素材新人教版20191205339.docx
  • 九年级历史下册第二单元第二次工业革命和近代科学文化第5课第二次工业革命海厄特素材新人教版20191205340.docx九年级历史下册第二单元第二次工业革命和近代科学文化第5课第二次工业革命海厄特素材新人教版20191205340.docx
  • 九年级历史下册第二单元动荡与变革的时代第6课经济大危机与罗斯福新政练习北师大版.docx九年级历史下册第二单元动荡与变革的时代第6课经济大危机与罗斯福新政练习北师大版.docx
  • 九年级历史下册第二单元动荡与变革的时代第5课尤和土耳其的民族解放运动练习北师大版.docx九年级历史下册第二单元动荡与变革的时代第5课尤和土耳其的民族解放运动练习北师大版.docx
  • 九年级历史下册第二单元动荡与变革的时代直击中考练习北师大版.docx九年级历史下册第二单元动荡与变革的时代直击中考练习北师大版.docx
  • 九年级历史下册第二单元动荡与变革的时代单元提升练习北师大版.docx九年级历史下册第二单元动荡与变革的时代单元提升练习北师大版.docx
  • 九年级历史下册第三单元第二次世界大战第9课世界反法西斯战争的胜利练习北师大版.docx九年级历史下册第三单元第二次世界大战第9课世界反法西斯战争的胜利练习北师大版.docx
  • 九年级历史下册第三单元第二次世界大战第8课第二次世界大战的全面爆发与扩大练习北师大版.docx九年级历史下册第三单元第二次世界大战第8课第二次世界大战的全面爆发与扩大练习北师大版.docx
  • 九年级历史下册第三单元第二次世界大战直击中考练习北师大版.docx九年级历史下册第三单元第二次世界大战直击中考练习北师大版.docx
  • 九年级历史下册第三单元第二次世界大战专题一两次世界大战练习北师大版.docx九年级历史下册第三单元第二次世界大战专题一两次世界大战练习北师大版.docx
  • 九年级历史下册第一单元第一次世界大战第3课凡尔赛_华盛顿体系的建立练习北师大版.docx九年级历史下册第一单元第一次世界大战第3课凡尔赛_华盛顿体系的建立练习北师大版.docx
  • 九年级历史下册第一单元第一次世界大战第1课两大军事集团的争斗练习北师大版.docx九年级历史下册第一单元第一次世界大战第1课两大军事集团的争斗练习北师大版.docx
  • 九年级历史下册第一单元第一次世界大战直击中考练习北师大版.docx九年级历史下册第一单元第一次世界大战直击中考练习北师大版.docx
  • 九年级历史下册第一单元第一次世界大战单元提升练习北师大版.docx九年级历史下册第一单元第一次世界大战单元提升练习北师大版.docx
  • 九年级历史下册 第一单元《殖民地人民的反抗与资本主义制度的扩展》检测题 新人教版.docx九年级历史下册 第一单元《殖民地人民的反抗与资本主义制度的扩展》检测题 新人教版.docx
  • 九年级历史上学期期中测试卷(1-21课)-【帮课堂】2023-2024学年九年级历史上册同步学与练(部编版).docx九年级历史上学期期中测试卷(1-21课)-【帮课堂】2023-2024学年九年级历史上册同步学与练(部编版).docx
  • 九年级历史上册第三单元近代社会的曙光提升训练题.docx九年级历史上册第三单元近代社会的曙光提升训练题.docx
  • 九年级历史上册 第四单元 封建时代的亚洲国家 第12课 阿拉伯帝国拓展练习 新人教版.docx九年级历史上册 第四单元 封建时代的亚洲国家 第12课 阿拉伯帝国拓展练习 新人教版.docx
  • 九年级历史上册 第四单元 封建时代的亚洲国家 第12课 阿拉伯帝国同步练习 新人教版.docx九年级历史上册 第四单元 封建时代的亚洲国家 第12课 阿拉伯帝国同步练习 新人教版.docx
  • 九年级历史上册 第四单元 封建时代的亚洲国家 第11课 古代日本同步练习 新人教版.docx九年级历史上册 第四单元 封建时代的亚洲国家 第11课 古代日本同步练习 新人教版.docx
  • 九年级历史上册 第六单元 资本主义制度的初步确立 第19课 法国大革命和拿破仑帝国同步练习 新人教版.docx九年级历史上册 第六单元 资本主义制度的初步确立 第19课 法国大革命和拿破仑帝国同步练习 新人教版.docx
  • 九年级历史上册 第六单元 资本主义制度的初步确立 第18课 美国的独立同步练习 新人教版.docx九年级历史上册 第六单元 资本主义制度的初步确立 第18课 美国的独立同步练习 新人教版.docx
  • 九年级历史上册 第六单元 资本主义制度的初步确立 第17课 君主立宪制的英国同步练习 新人教版.docx九年级历史上册 第六单元 资本主义制度的初步确立 第17课 君主立宪制的英国同步练习 新人教版.docx
  • 九年级历史上册 第五单元 走向近代 第15课 探寻新航路同步练习 新人教版.docx九年级历史上册 第五单元 走向近代 第15课 探寻新航路同步练习 新人教版.docx
  • 九年级历史上册 第五单元 走向近代 第14课 文艺复兴运动拓展练习 新人教版.docx九年级历史上册 第五单元 走向近代 第14课 文艺复兴运动拓展练习 新人教版.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1