分享
分享赚钱 收藏 举报 版权申诉 / 28

类型2022年最新人教版数学八年级上册期中模拟试题 卷(Ⅱ)(含答案解析).docx

  • 上传人:a****
  • 文档编号:706840
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:28
  • 大小:557.47KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年最新人教版数学八年级上册期中模拟试题 卷含答案解析 2022 新人 数学 年级 上册 期中 模拟 试题 答案 解析
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中模拟试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,AB和CD相交于点O,则下列结论正确的是()A12B23C34D

    2、152、如图,三角形纸片ABC,AB=AC,BAC=90,点E为AB中点,沿过点E的直线折叠,使点B与点A重合,折痕现交于点F,已知EF=,则BC的长是()AB3C3D33、如图,在中,是的平分线,若,则 ()ABCD4、下列多边形中,内角和最大的是()ABCD5、如图,则A45B55C35D65二、多选题(5小题,每小题4分,共计20分)1、若一个三角形的两边长分别为5和7,则该三角形的周长可能是()A12B16C19D252、如图,等腰三角形ABC中,AB=AC,D、E都在BC上,要使ABDACE,添加一个条件可行的是() 线 封 密 内 号学级年名姓 线 封 密 外 AAD=AEBBD=

    3、CECBE=CDDBAD=CAE3、如图,EADF,AE=DF,要使AECDFB,可以添加的条件有()AAB=CDBAC=BDCA=DDE=F4、关于多边形,下列说法中正确的是()A过七边形一个顶点可以作4条对角线B边数越多,多边形的外角和越大C六边形的内角和等于720D多边形的内角中最多有3个锐角5、如图,则下列结论正确的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、已知ABC,A=80,BF平分外角CBD,CF平分外角BCE,BG平分CBF,CG平分外角BCF,则G=_2、如图,在ABC中,AC=BC,ABC=54,CE平分ACB,AD平分CAB,C

    4、E与AD交于点F,G为ABC外一点,ACD=FCG,CBG=CAF,连接DG下列结论:ACFBCG;BGC=117;SACE=SCFD+SBCG;AD=DG+BG其中结论正确的是_(只需要填写序号)3、如图,中,D为延长线上一点,且,与的延长线交于点P,若,则_4、下列说法正确的有_(填序号)三角形的外角和为360; 线 封 密 内 号学级年名姓 线 封 密 外 三角形的三个内角都是锐角;三角形的任何两边之差小于第三边; 四边形具有稳定性5、如图,D,E,F分别是的边,上的中点,连接,交于点G,的面积为6,设的面积为,的面积为,则=_四、解答题(5小题,每小题8分,共计40分)1、阅读材料并完

    5、成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题请看这个例题:如图1,在四边形ABCD中,BAD=BCD=90,AB=AD,若AC=2cm,求四边形ABCD的面积解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明BAEDAC,根据全等三角形的性质得AE=AC=2, EAB=CAD,则EAC=EAB+BAC=DAC+BAC=BAD=90,得S四边形ABCD=SABC+SADC=SABC+SABE=SAEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积(1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2(2)请你用上面学到的方法完成下面的习题

    6、如图2,已知FG=FN=HM=GH+MN=2cm,G=N=90,求五边形FGHMN的面积2、在湖的两岸A、B间建一座观赏桥,由于条件限制,无法直接度量A、B两点间的距离请你用学过的数学知识按以下要求设计一测量方案(1)画出测量图案;(2)写出测量步骤(测量数据用字母表示);(3)计算AB的距离(写出求解或推理过程,结果用字母表示)3、如图,在ABC中,ABBC,ABC60,线段AC与AD关于直线AP对称,E是线段BD与直线AP的交点(1)若DAE15,求证:ABD是等腰直角三角形;(2)连CE,求证:BEAE+CE4、小明和小亮在学习探索三角形全等时,碰到如下一题:如图1,若AC=AD,BC=

    7、BD,则ACB与ADB有怎样的关系?(1)请你帮他们解答,并说明理由 线 封 密 内 号学级年名姓 线 封 密 外 (2)细心的小明在解答的过程中,发现如果在AB上任取一点E,连接CE、DE,则有CE=DE,你知道为什么吗?(如图2)(3)小亮在小明说出理由后,提出如果在AB的延长线上任取一点P,也有第2题类似的结论请你帮他画出图形,并证明结论5、如图,已知,求证:.-参考答案-一、单选题1、A【解析】【分析】根据平行线的性质和对顶角的性质进行判断【详解】解:A、1与2是对顶角,12,本选项说法正确;B、AD与AB不平行,23,本选项说法错误;C、AD与CB不一定平行,34,本选项说法错误;D

    8、、CD与CB不平行,15,本选项说法错误;故选:A【考点】本题考查平行线的应用,熟练掌握平行线的性质和对顶角的意义与性质是解题关键2、B【解析】【分析】折叠的性质主要有:1.重叠部分全等;2.折痕是对称轴,对称点的连线被对称轴垂直平分. 由折叠的性质可知,所以可求出AFB=90,再直角三角形的性质可知,所以,的长可求,再利用勾股定理即可求出BC的长【详解】解: ABAC,, 线 封 密 内 号学级年名姓 线 封 密 外 故选B.【考点】本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出AFB=90是解题的关键3、A【解析】【分析】过点D作于点E,根据角平分线的性质得 ,D

    9、EDC再根据三角形面积公式即可求解【详解】解:过点D作于点E,在中,是的平分线,故答案为:A【考点】本题考查了角平分线的性质,三角形的面积,正确理解角平分线的性质是解本题的关键4、D【解析】【分析】根据多边形内角和公式可直接进行排除选项【详解】解:A、是一个三角形,其内角和为180;B、是一个四边形,其内角和为360;C、是一个五边形,其内角和为540;D、是一个六边形,其内角和为720;内角和最大的是六边形;故选D【考点】本题主要考查多边形内角和,熟练掌握多边形内角和公式是解题的关键5、B【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 求出BE=CF,根据SSS证出AEBDF

    10、C,推出C=B,根据全等三角形的判定推出即可【详解】解答:证明:,BE=CF,在AEB和DFC中,AEBDFC(SSS),C=B=55.【考点】本题考查了全等三角形的性质和判定,解此题的关键是推出AEBDFC,注意:全等三角形的对应边相等,对应角相等二、多选题1、BC【解析】【分析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项【详解】解:三角形的两边长分别为5和7,7-5=2第三条边7+5=12,5+7+2三角形的周长5+7+12,即14三角形的周长24,故选BC【考点】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之

    11、差小于第三边,据此解答即可2、ABCD【解析】【分析】根据全等三角形的判定定理SAS,ASA,AAS,SSS,对每一个选项进行判断即可【详解】解:在ABC中,ABAC,BC,当ADAE时,ADEAED,ADEBBAD,AEDCCAE,BADCAE,然后根据SAS或ASA或AAS可判定ABDACE;当BDCE时,根据SAS可判定ABDACE;当BECD时,BEDECDDE,即BDCE,根据SAS可判定ABDACE;当BADCAE时,根据ASA可判定ABDACE 线 封 密 内 号学级年名姓 线 封 密 外 综上所述ABCD均可判定ABDACE故选:ABCD【考点】本题考查了全等三角形的判定的应用

    12、,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目比较好,难度适中3、ABD【解析】【分析】由AEDF可得A=D,要判定AECDFB,已知一边一角,根据三角形全等的判定方法,如果要加边相等,只能是AC=DB(或AB=CD);如果要加角相等,可以是E=F或者是ACE=DBF,结合四个选项即可求解【详解】解:AEDF,A=D,A、AB=CD,AB+BC=CD+BC,即AC=DB,又AE=DF,A=D,根据SAS能推出AECDFB,故本选项符合题意;B、AC=BD,AE=DF,A=D,根据SAS能推出AECDFB,故本选项符合题意;C、A=D,AE=DF,不能推出AECDFB,故本选

    13、项不符合题意;D、E=F,AE=DF,A=D,根据ASA能推出AECDFB,故本选项符合题意;故选:ABD【考点】本题考查了全等三角形的判定定理和平行线的性质,能熟记全等三角形的判定定理的内容是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS4、ACD【解析】【分析】根据多边形的内角和、外角和,多边形的内角线,即可解答【详解】解:A、过七边形一个顶点可以作4条对角线,选项正确,符合题意;B、多边形的外角和是固定不变的,选项错误,不符合题意;C、六边形的内角和等于720,选项正确,符合题意;D、多边形的内角中最多有3个锐角,选项正确,符合题意;故选:ACD【考点】本题考查

    14、了多边形,解决本题的关键是熟记多边形的有关性质5、ACD【解析】【分析】先证出(AAS),得,等量代换得,故C正确;证出(ASA),得到EM=FN,故A正确;根据ASA证出,故D正确;若,则,但不一定为,故B错误;即可得出结果 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:在和中,(AAS),故C选项说法正确,符合题意;在和中,(ASA),EM=FN,故A选项说法正确,符合题意;在和中,(ASA),故D选项说法正确,符合题意;若,则,但不一定为,故B选项说法错误,不符合题意;故选ACD【考点】本题考查了全等三角形的判定与性质,解题的关键是熟练掌握全等三角形的判定与性质三、填空题1、

    15、115【解析】【分析】由三角形外角的性质即三角形的内角和定理可求解DBC+ECB=260,再利用角平分线的定义可求解FBC+FCB=130,即可得GBC+GCB=65,再利用三角形内角和定理可求解【详解】解:DBC=A+ACB,ECB=A+ABC,DBC+ECB=A+ACB+A+ABC,ACB+A+ABC=180,DBC+ECB=A+180=80+180=260,BF平分外角DBC,CF平分外角ECB,FBC=DBC,FCB=ECB,FBC+FCB=(DBC+ECB)=130,BG平分CBF,CG平分BCF, 线 封 密 内 号学级年名姓 线 封 密 外 GBC=FBC,GCB=FCB,GBC

    16、+GCB=(FBC+FCB)=65,G=180-(GBC-GCB)=180-65=115故答案为:115【考点】本题主要考查三角形的内角和定理,三角形外角的性质,角平分线的定义,求解FBC+FCB=130是解题的关键2、【解析】【分析】根据条件求得BAC=ABC=54,ACB=72,ACE=BCE=36,CAF=BAF =27,利用ASA证明ACFBCG,再根据SAS证明CDFCDG,据此即可推断各选项的正确性【详解】解:在ABC中,AC=BC,ABC=54,BAC=ABC=54,ACB=180-54-54=72,AC=BC,CE平分ACB,AD平分CAB,ACE=BCE=ACB=36,CAF

    17、=BAF=BAC=27,ACD=FCG=72,BCG=FCG-36=36,在ACF和BCG中,ACFBCG(ASA);故正确;BGC=AFC=180-36-27=117,故正确;CF=CG,AF=BG,在CDF和CDG中,CDFCDG(SAS),DF= DG,AD=DF+AF=DG+BG,故正确;SCFD+SBCG= SCFD+SACF = SACD,而SACE不等于SACD,故不正确;综上,正确的是,故答案为:【考点】本题考查了全等三角形的判定和性质,三角形内角和定理,角平分线的定义,解题的关键是灵活运用所学知识解决问题,3、【解析】【分析】作于,根据全等三角形性质得出CP=PM,DC=AM

    18、,设PC=PM=x,AC=BC=3x,AM=DC=5x,求出BD=2x,即可求出答案【详解】解:作于, 线 封 密 内 号学级年名姓 线 封 密 外 ,在和中,在和中,设,故答案为:【考点】本题考查了三角形内角和定理,全等三角形的性质和判定的应用,主要考查学生的推理能力4、【解析】【分析】根据三角形的外角和定理,三角形的分类,三角形的三边关系,四边形的不稳定性进行判断便可【详解】解:任意多边形的外角和都为360,故正确;钝角三角与直角三角形各只有两个锐角,故错误;三角形的任意两边之和大于第三边,任意两边之差小于第三边,故正确;三角形具有稳定性,四边形具有不稳定性,故错误故答案为:【考点】本题主

    19、要考查了多边形的外角和定理,三角形的分类的应用,三角形的三边关系,四边形的不稳定 线 封 密 内 号学级年名姓 线 封 密 外 性,关键是熟记这些性质5、【解析】【分析】根据同高三角形的面积比就是相应底的比进行推导即可求得答案【详解】解:是的中点,、分别是、的中点,设的面积为,的面积为故答案是:【考点】本题考查了与三角形中线有关的三角形面积问题,涉及到了三角形中线的性质、三角形的面积公式、同高三角形面积之比等于相应底的比等,难度不大四、解答题1、(1)2;(2)4【解析】【分析】(1)根据题意可直接求等腰直角三角形EAC的面积即可;(2)延长MN到K,使NK=GH,连接FK、FH、FM,由(1

    20、)易证,则有FK=FH,因为HM=GH+MN易证,故可求解【详解】(1)由题意知,故答案为2;(2)延长MN到K,使NK=GH,连接FK、FH、FM,如图所示: FG=FN=HM=GH+MN=2cm,G=N=90,FNK=FGH=90,FH=FK,又FM=FM,HM=KM=MN+GH=MN+NK, 线 封 密 内 号学级年名姓 线 封 密 外 MK=FN=2cm,【考点】本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用2、(1)见解析;(2)见解析;(3)设DC=m,则AB= m【解析】【分析】本题让我们了解测量两点之间的距离的一种方法,设计时,只要符合全等三角形全

    21、等的条件,方案具有可操作性,需要测量的线段在陆地一侧可实施,就可以达到目的【详解】解:(1)见图:(2)在湖岸上选一点O,连接BO并延长到C使BO=OC,连接AO并延长到点D使OD=AO,连接CD,则AB= CD测量DC的长度即为AB的长度;(3)设DC=mBO=CO,AOB=COD,AO=DOAOBCOD(SAS)AB=CD=m【考点】本题考查了全等三角形的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系3、(1)见解析;(2)见解析【解析】【分析】(1)首先根据题意确定出ABC是等边三角形,然后根据等边三角形的性质推出BAC60,再根据线

    22、段AC与AD关于直线AP对称,以及DAE15,推出BAD90,即可得出结论;(2)利用“截长补短”的方法在BE上取点F,使BFCE,连接AF,根据题目条件推出ABFACE,得出AFAE,再进一步推出AEF60,可得到AFE是等边三角形,则得到AFFE,从而推出结论即可【详解】证明:(1)在ABC中,ABBC,ABC60,ABC是等边三角形,ACABBC,BACABCACB60,线段AC与AD关于直线AP对称,CAEDAE15,ADAC,BAEBAC+CAE75,BAD90,ABACAD,ABD是等腰直角三角形;(2)在BE上取点F,使BFCE,连接AF, 线 封 密 内 号学级年名姓 线 封

    23、密 外 线段AC与AD关于直线AP对称,ACEADE,ADAC,ADACAB,ADBABD=ACE,在ABF与ACE中,ABFACE(SAS),AFAE,ADAB,DABD,又CAEDAE,在AFE中,AFAE,AEF60,AFE是等边三角形,AFFE,BEBF+FECE+AE【考点】本题考查全等三角形的判定与性质,以及等边三角形的判定与性质等,掌握等边三角形的判定与性质,以及全等三角形的常见辅助线的构造方法是解题关键4、(1),理由见解析;(2)见解析;(3)见解析【解析】【分析】(1)根据全等三角形的判定定理证得;(2)由(1)中的全等三角形的对应角相等证得,则由全等三角形的判定定理证得,

    24、则对应边;(3)同(2),利用全等三角形的对应边相等证得结论【详解】解:(1),理由如下:如图1,在与中,;(2)如图2,由(1)知,则在与中,; 线 封 密 内 号学级年名姓 线 封 密 外 (3)如图3,理由同(2),则【考点】本题考查了全等三角形的判定与性质在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形5、证明见解析.【解析】【分析】利用SSS可证明ABDACE,可得BAD=1,ABD=2,根据三角形外角的性质即可得3=BAD+ABD,即可得结论.【详解】在ABD和ACE中,ABDACE,BAD=1,ABD=2,3=BAD+ABD,3=1+2.【考点】本题考查全等三角形的判定与性质及三角形外角性质,熟练掌握判定定理及外角性质是解题关键.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年最新人教版数学八年级上册期中模拟试题 卷(Ⅱ)(含答案解析).docx
    链接地址:https://www.ketangku.com/wenku/file-706840.html
    相关资源 更多
  • 人教版化学选修三重点强化教案.docx人教版化学选修三重点强化教案.docx
  • 人教版化学第六单元碳和碳的氧化物专项练习题(有答案).docx人教版化学第六单元碳和碳的氧化物专项练习题(有答案).docx
  • 人教版化学第三单元课题一分子运动实验专题练习(无答案).docx人教版化学第三单元课题一分子运动实验专题练习(无答案).docx
  • 人教版化学第一单元课题3第1课时 化学药品的取用 学案与练习.docx人教版化学第一单元课题3第1课时 化学药品的取用 学案与练习.docx
  • 人教版化学必修一第二章第一节物质的分类导学案.docx人教版化学必修一第二章第一节物质的分类导学案.docx
  • 人教版化学必修一第二章第一节物质的分类导学案.docx人教版化学必修一第二章第一节物质的分类导学案.docx
  • 人教版化学必修一第一章第一节第一节 化学实验基本方法化学实验安全 过滤和蒸发基础知识强化练习无答案.docx人教版化学必修一第一章第一节第一节 化学实验基本方法化学实验安全 过滤和蒸发基础知识强化练习无答案.docx
  • 人教版化学必修一第一章从实验学化学第二课时学案.docx人教版化学必修一第一章从实验学化学第二课时学案.docx
  • 人教版化学必修一同步检测卷(一)化学实验基本方法测试卷扫描版.docx人教版化学必修一同步检测卷(一)化学实验基本方法测试卷扫描版.docx
  • 人教版化学必修1 第一章 从实验学化学  蒸馏和萃取 导学案.docx人教版化学必修1 第一章 从实验学化学  蒸馏和萃取 导学案.docx
  • 人教版化学化学课题1 分子和原子中考常考练习题专练.docx人教版化学化学课题1 分子和原子中考常考练习题专练.docx
  • 人教版化学初三下第十二单元12.2化学元素与人体健康教案.docx人教版化学初三下第十二单元12.2化学元素与人体健康教案.docx
  • 人教版化学初三下第九单元9.1溶液的形成教案.docx人教版化学初三下第九单元9.1溶液的形成教案.docx
  • 人教版化学初三下册:第9单元 课题3 溶质的质量分数(第3课时)学案.docx人教版化学初三下册:第9单元 课题3 溶质的质量分数(第3课时)学案.docx
  • 人教版化学初三下册:第9单元 课题3 溶质的质量分数(第2课时)学案.docx人教版化学初三下册:第9单元 课题3 溶质的质量分数(第2课时)学案.docx
  • 人教版化学初三下册:第9单元 课题2 溶解度(第2课时)学案.docx人教版化学初三下册:第9单元 课题2 溶解度(第2课时)学案.docx
  • 人教版化学初三下册:第8单元 课题3 金属资源的利用和保护(第2课时)学案.docx人教版化学初三下册:第8单元 课题3 金属资源的利用和保护(第2课时)学案.docx
  • 人教版化学初三下册:第8单元 课题2 金属的化学性质(第2课时)学案.docx人教版化学初三下册:第8单元 课题2 金属的化学性质(第2课时)学案.docx
  • 人教版化学初三下册:第11单元 课题2 化学肥料(第2课时)学案.docx人教版化学初三下册:第11单元 课题2 化学肥料(第2课时)学案.docx
  • 人教版化学初三下册:第11单元 课题1 生活中常见的盐(第3课时)学案.docx人教版化学初三下册:第11单元 课题1 生活中常见的盐(第3课时)学案.docx
  • 人教版化学初三下册:第11单元 课题1 生活中常见的盐(第2课时)学案.docx人教版化学初三下册:第11单元 课题1 生活中常见的盐(第2课时)学案.docx
  • 人教版化学初三下册:第10单元 课题2 酸和碱的中和反应(第2课时)学案.docx人教版化学初三下册:第10单元 课题2 酸和碱的中和反应(第2课时)学案.docx
  • 人教版化学初三下册:第10单元 课题1 常见的酸和碱(第1课时)学案.docx人教版化学初三下册:第10单元 课题1 常见的酸和碱(第1课时)学案.docx
  • 人教版化学初三下册教案:第9单元 课题3第2课时 溶液的综合计算.docx人教版化学初三下册教案:第9单元 课题3第2课时 溶液的综合计算.docx
  • 人教版化学初三下册教案:第9单元 课题3第1课时 溶质的质量分数.docx人教版化学初三下册教案:第9单元 课题3第1课时 溶质的质量分数.docx
  • 人教版化学初三下册教案:第9单元 课题2第2课时 溶解度.docx人教版化学初三下册教案:第9单元 课题2第2课时 溶解度.docx
  • 人教版化学初三下册教案:第9单元 课题2第1课时 饱和溶液与不饱和溶液.docx人教版化学初三下册教案:第9单元 课题2第1课时 饱和溶液与不饱和溶液.docx
  • 人教版化学初三下册教案:第9单元 课题1第2课时 溶解时的热量变化及乳化现象.docx人教版化学初三下册教案:第9单元 课题1第2课时 溶解时的热量变化及乳化现象.docx
  • 人教版化学初三下册教案:第9单元 课题1第1课时 溶液.docx人教版化学初三下册教案:第9单元 课题1第1课时 溶液.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1