分享
分享赚钱 收藏 举报 版权申诉 / 23

类型2022年综合复习人教版九年级数学上册期末专题测试试题 卷(Ⅲ)(含答案及详解).docx

  • 上传人:a****
  • 文档编号:709465
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:23
  • 大小:381.93KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年综合复习人教版九年级数学上册期末专题测试试题 卷含答案及详解 2022 综合 复习 人教版 九年级 数学 上册 期末 专题 测试 试题 答案 详解
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末专题测试试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、下列一元二次方程中,有两个不相等实数根的是( )ABx2+2x+4

    2、=0Cx2-x+2=0Dx2-2x=02、关于的一元二次方程的两根应为()AB,CD3、方程y2-a有实数根的条件是()Aa0Ba0Ca0Da为任何实数4、将抛物线C1:y(x3)22向左平移3个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()Ayx22Byx22Cyx22Dyx225、若点P(2,)与点Q(,)关于原点对称,则mn的值分别为()ABC1D5二、多选题(5小题,每小题4分,共计20分)1、下列说法正确的是()A圆是轴对称图形,它有无数条对称轴B圆的半径、弦长的一半、弦上的弦心距能组成一个直角三角形,且圆的半径是此直角三角形的斜边C弦长相等

    3、,则弦所对的弦心距也相等D垂直于弦的直径平分这条弦,并且平分弦所对的弧2、已知直角三角形的两条边长恰好是方程的两个根,则此直角三角形斜边长是()ABC3D53、如图,抛物线过点,对称轴是直线下列结论正确的是()ABC若关于x的方程有实数根,则D若和是抛物线上的两点,则当时,4、下列命题正确的是() 线 封 密 内 号学级年名姓 线 封 密 外 A垂直于弦的直径平分弦所对的两条弧B弦的垂直平分线经过圆心C平分弦的直径垂直于弦D平分弦所对的两条弧的直线垂直于弦5、在图形旋转中,下列说法正确的是()A在图形上的每一点到旋转中心的距离相等B图形上每一点转动的角度相同C图形上可能存在不动的点D图形上任意

    4、两点的连线与其对应两点的连线长度相等第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、对于任意实数,抛物线与轴都有公共点则的取值范围是_2、二次函数的最大值是_3、如果关于的一元二次方程的一个解是,那么代数式的值是_4、如图,点O是正方形ABCD的对称中心,射线OM,ON分别交正方形的边AD,CD于E,F两点,连接EF,已知,(1)以点E,O,F,D为顶点的图形的面积为_;(2)线段EF的最小值是_5、如果关于的一元二次方程有实数根,那么的取值范围是_四、解答题(5小题,每小题8分,共计40分)1、某商场经营某种品牌的玩具,购进的单价是30元,根据市场调查,在一段时间内,

    5、销售单价是40元时,销售量是600元,而销售单价每涨1元,就会少售出10件玩具(1)设该种品牌玩具的销售单价为x元,请你分别用x的代数式来表示销售量y件和销售该品牌玩具获利利润W元;(2)在(1)的条件下,若商场获利了10000元销售利润,求该玩具销售单价x应定为多少元?(3)在(1)的条件下,若玩具厂规定该品牌玩具销售单价不低于45元,且商场要完成不少于480件的销售任务,求商场销售该品牌玩具获利的最大利润是多少元?2、已知抛物线ymx22mx3.(1)若抛物线的顶点的纵坐标是2,求此时m的值;(2)已知当m0时,无论m为其他何值,每一条抛物线都经过坐标系中的两个定点,求出这两个定点的坐标.

    6、3、已知抛物线c:y=x22x3和直线l:y=xd。将抛物线c在x轴上方的部分沿x轴翻折180,其余部分保持不变,翻折后的图象与x轴下方的部分组成一个“M”型的新图象(即新函数m:y=|x22x3|的图象)。(1)当直线l与这个新图象有且只有一个公共点时,d= ;(2)当直线l与这个新图象有且只有三个公共点时,求d的值;(3)当直线l与这个新图象有且只有两个公共点时,求d的取值范围;(4)当直线l与这个新图象有四个公共点时,直接写出d的取值范围 线 封 密 内 号学级年名姓 线 封 密 外 4、已知抛物线(1)该抛物线的对称轴为 ;(2)若该抛物线的顶点在x轴上,求抛物线的解析式;(3)设点M

    7、(m,),N(2,)在该抛物线上,若,求m的取值范围5、为增加农民收入,助力乡村振兴某驻村干部指导农户进行草莓种植和销售,已知草莓的种植成本为8元/千克,经市场调查发现,今年五一期间草莓的销售量y(千克)与销售单价x(元/千克)(8x40)满足的函数图象如图所示(1)根据图象信息,求y与x的函数关系式;(2)求五一期间销售草莓获得的最大利润-参考答案-一、单选题1、D【解析】【分析】逐一分析四个选项中方程的根的判别式的符号,由此即可得出结论【详解】A.此方程判别式 ,方程有两个相等的实数根,不符合题意; B.此方程判别式 方程没有实数根,不符合题意;C.此方程判别式 ,方程没有实数根,不符合题

    8、意;D .此方程判别式 ,方程有两个不相等的实数根,符合题意;故答案为: D.【考点】此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根2、B【解析】【分析】先把方程化为一般式,再计算判别式的值,然后利用求根公式解方程即可【详解】x23ax+a2=0,=(3a)24a2=a2,x=.所以x1=a,x2=a.故答案选B.【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了解一元二次方程,解题的关键是根据公式法解一元二次方程.3、A【解析】【分析】根据平方的非负性可以得出

    9、a0,再进行整理即可【详解】解:方程y2a有实数根,a0(平方具有非负性),a0;故选:A【考点】此题考查了直接开平方法解一元二次方程,关键是根据已知条件得出a04、D【解析】【分析】根据抛物线C1的解析式得到顶点坐标,利用二次函数平移的规律:左加右减,上加下减,并根据平移前后二次项的系数不变可得抛物线C2的顶点坐标,再根据关于x轴对称的两条抛物线的顶点横坐标相等,纵坐标互为相反数,二次项系数互为相反数可得到抛物线C3所对应的解析式【详解】解:抛物线 C 1:y(x3)22,其顶点坐标为(3,2)向左平移3个单位长度,得到抛物线C2抛物线C2的顶点坐标为(0,2)抛物线C2与抛物线C3关于 x

    10、轴对称抛物线C3的横坐标不变,纵坐标互为相反数,二次项系数互为相反数抛物线C3的顶点坐标为(0,2),二次项系数为1抛物线C3的解析式为yx22故选:D【考点】本题主要考查了二次函数图象的平移、对称问题,熟练掌握平移的规律以及关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数是解题的关键5、B【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数解答【详解】解:P(2,-n)与点Q(-m,-3)关于原点对称,2=-(-m),-n=-(-3),m=2,n=-3, 故选:B【考点】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律二、

    11、多选题1、ABD【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据圆的相关知识和垂径定理进行分析即可【详解】解:A. 圆是轴对称图形,它有无数条对称轴,正确;B. 圆的半径、弦长的一半、弦上的弦心距能组成一个直角三角形,且圆的半径是此直角三角形的斜边,正确;C. 弦长相等,则弦所对的弦心距也相等,不正确,只有在同圆或等圆中,弦长相等,则弦所对的弦心距也相等;D. 垂直于弦的直径平分这条弦,并且平分弦所对的弧,正确故选:ABD【考点】本题考查了学生对圆的基本概念和垂径定理的理解,属于基础题2、AC【解析】【分析】先解出一元二次方程,再根据勾股定理计算即可;【详解】,或,当2、3

    12、是直角边时,斜边;,3可以是三角形斜边;故选AC【考点】本题主要考查了一元二次方程的求解、勾股定理,准确计算是解题的关键3、D【解析】【详解】解:A.抛物线开口向下,a0,对称轴在y轴左侧,a、b同号,b0,abc0,故此选项不符合题意;B.(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b),抛物线过点,对称轴是直线,抛物线与x轴另一交点为(2,0), 当x=2时,y=ax2+bx+c=4a+c+2b=0,(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b)=0,(4a+c)2=4b2,故此选项不符合题意; 线 封 密 内 号学级年名姓 线 封 密 外 C.,b=2a

    13、,当x=2时,y=ax2+bx+c=4a+c+2b=0,4a+c+4a=0,c=-8a,关于x的方程有实数根,=b2-4a(c-m)0,(2a)2-4a(-8a-m) 0,a|x2+1|,点(x1,y1)到对称轴的距离大于点(x2,y2) 到对称轴的距离,y10时有最小值,a0时有最大值,题中函数 ,故其在时有最大值.【详解】解:,有最大值,当时,有最大值8故答案为8【考点】本题考查了二次函数顶点式求最值,熟练掌握二次函数的表达式及最值的确定方法是解题的关键.3、【解析】【分析】根据关于的一元二次方程的一个解是,可以得到的值,然后将所求式子变形,再将的值代入,即可解答本题【详解】解:关于的一元

    14、二次方程的一个解是,故答案为:2020【考点】本题考查一元二次方程的解,解答本题的关键是明确一元二次方程的解的含义4、 1 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】(1)连接AO,DO,证明,可得,求出即可求解;(2)设,则,由勾股定理可得,即可求EF的最小值【详解】解:(1)连接AO,DO,四边形ABCD是正方形,O是中心,故答案为:1;(2)设,则, , 在中,当时,EF有最小值,故答案为:【考点】本题考查正方形的性质,全等三角形的判定与性质,二次函数的性质,熟练掌握二次函数求最值的方法是解题的关键5、【解析】【分析】由一元二次方程根与系数的关键可得: 从而列不等式可

    15、得答案【详解】解: 关于的一元二次方程有实数根, 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:【考点】本题考查的是一元二次方程根的判别式,掌握一元二次方程根的判别式是解题的关键四、解答题1、(1),;(2)50元或80元;(3)商场销售该品牌玩具获利的最大利润是10560元【解析】【分析】(1)根据销售量与销售单价之间的变化关系就可以直接求出y与x之间的关系式;根据销售问题的利润=售价-进价就可以表示出w与x之间的关系;(2)根据题意得方程求得x1=50,x2=80,于是得到结论;(3)根据销售单价不低于45元且商场要完成不少于480件的销售任务求得45x52,根据二次函数的性质得

    16、到当45x52时,y随x增大而增大,于是得到结论【详解】解:(1)依等量关系式“销量=原销量-因涨价而减少销量,总利润=单个利润销量”可列式为: y=600-10(x-40)=-10x+1000;W=(x-30)(-10x+1000)=-10+1300x-30000(2)由题意可得:10+1300x30000=10000,解得:x=50或x=80,该玩具销售单价x应定为50元或80元(3)由题意可得:,解得:45x52,W=10+1300x30000=10(+12250,100,W随x的增大而减小,又45x52,当x=52时,W有最大值,最大值为10560元,商场销售该品牌玩具获利的最大利润是

    17、10560元【考点】本题考查了一元二次方程的解法的运用,二次函数的解析式的运用,二次函数的顶点式的运用,解答时求出二次函数的解析式是关键2、 (1)-1;(2) (0,3)与(2,3).【解析】【分析】(1)根据抛物线的顶点的纵坐标是2,可以求得m的值;(2)根据当m0时,无论m为其他何值,每一条抛物线都经过坐标系中的两个定点,可以求得这两个定点的坐标【详解】解:(1)ymx22mx3m(x1)2m3,抛物线的顶点的纵坐标是2,m32,解得m1,即m的值是1;(2)当m0时,无论m为其他何值,每一条抛物线都经过坐标系中的两个定点,当m1时,yx22x3;当m2时,y2x24x3,x22x32x

    18、24x3. 线 封 密 内 号学级年名姓 线 封 密 外 x22x0.x10,x22.这两个定点为(0,3)与(2,3).【考点】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用数形结合的思想和二次函数的性质解答3、 (1)d=;(2)d=或d=(3)d或d; (4)d。【解析】【分析】(1)令x22x3=xd求解即可;(2)设抛物线c:y=x22x3与x轴交于点A(3,0),点B(1,0),则根据方程有两个相等的实根求出P的坐标,然后求解即可;(3)(4)根据(2)求出的P点坐标进行数形结合画图找出d的取值范围即可.【详解】解:(1)当直线l经过点A(3,0

    19、)时,d=;(2)设抛物线c:y=x22x3与x轴交于点A(3,0),点B(1,0), 直线l:y=xd与抛物线c:y=x22x3(3x1)相切于点P,则点P的横坐标恰好是方程xd=x22x3,即2x23x2d6=0(3x1)的两个相等实数根,解=98(2d6)=0得d=,点P的坐标为().当直线l经过点B(1,0)时,直线l与这个新图象有且只有三个公共点,解得d=; 当直线l经过点P()时,直线l与这个新图象有且只有三个公共点,解得d=; 综合、得:d=或d=(3)由平移直线l可得:直线l从经过点A(3,0)开始向下平移到直线l经过点P()的过程中,直线l与这个新图象有且只有两个公共点,可得

    20、d 直线l从经过点P()继续向下平移的过程中,直线l与这个新图象有且只有两个公共点,可得d;综合、得:d或d; (4)如图:当直线l经过点B(1,0)时,直线l与这个新图象有且只有三个公共点,解得d=; 线 封 密 内 号学级年名姓 线 封 密 外 当直线l继续向下平移的过程中经过点P(),直线l与这个新图象有且只有三个公共点,可得d=;要使直线l与这个新图象有四个公共点则d的取值范围是d.【考点】本题考查的是二次函数综合运用,关键是通过数形变换,确定变换后图形与直线的位置关系4、(1)直线x=-1;(2)或;(3)当a0时,m4或m2;当a0时,4m2【解析】【分析】(1)利用二次函数的对称

    21、轴公式即可求得(2)根据题意可知顶点坐标,再利用待定系数法即可求出二次函数解析式(3)分类讨论当a0时和a0时二次函数的性质,即可求出m的取值范围【详解】(1)利用二次函数的对称轴公式可知对称轴故答案为:(2)抛物线顶点在x轴上,对称轴为,顶点坐标为(-1,0)将顶点坐标代入二次函数解析式得:,整理得:,解得:抛物线解析式为或(3)抛物线的对称轴为直线x-1,N(2,y2)关于直线x-1的对称点为(-4,y2)根据二次函数的性质分类讨论()当a0时,抛物线开口向上,若y1y2,即点M在点N或的上方,则m-4或m2;()当a0时,抛物线开口向下,若y1y2,即点M在点N或的上方,则4m2【考点】

    22、本题为二次函数综合题,掌握二次函数的性质是解答本题的关键5、(1);(2)最大利润为3840元【解析】【分析】(1)分为8x32和32x40求解析式;(2)根据“利润(售价成本)销售量”列出利润的表达式,在根据函数的性质求出最大利润【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:(1)当8x32时,设ykxb(k0),则,解得:,当8x32时,y3x216,当32x40时,y120,;(2)设利润为W,则:当8x32时,W(x8)y(x8)(3x216)3(x40)23072,开口向下,对称轴为直线x40,当8x32时,W随x的增大而增大,x32时,W最大2880,当32x40时,W(x8)y120(x8)120x960,W随x的增大而增大,x40时,W最大3840,38402880,最大利润为3840元【考点】点评:本题以利润问题为背景,考查了待定系数法求一次函数的解析式、分段函数的表示、二次函数的性质,本题解题的时候要注意分段函数对应的自变量x的取值范围和函数的增减性,先确定函数的增减性,才能求得利润的最大值

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年综合复习人教版九年级数学上册期末专题测试试题 卷(Ⅲ)(含答案及详解).docx
    链接地址:https://www.ketangku.com/wenku/file-709465.html
    相关资源 更多
  • 专题04 统计概率(解答题11种考法)(精练)(解析版).docx专题04 统计概率(解答题11种考法)(精练)(解析版).docx
  • 专题04 统计概率(解答题11种考法)(精练)(原卷版).docx专题04 统计概率(解答题11种考法)(精练)(原卷版).docx
  • 专题04 细胞膜和细胞核(精练)(解析版).docx专题04 细胞膜和细胞核(精练)(解析版).docx
  • 专题04 细胞膜和细胞核(精练)(原卷版).docx专题04 细胞膜和细胞核(精练)(原卷版).docx
  • 专题04 细胞膜和细胞核(串讲)(解析版).docx专题04 细胞膜和细胞核(串讲)(解析版).docx
  • 专题04 细胞膜和细胞核(串讲)(原卷版).docx专题04 细胞膜和细胞核(串讲)(原卷版).docx
  • 专题04 细胞的生命历程(含细胞增殖)-【新题速递】2023届江苏高三生物模拟试卷分类汇编(5月刊).docx专题04 细胞的生命历程(含细胞增殖)-【新题速递】2023届江苏高三生物模拟试卷分类汇编(5月刊).docx
  • 专题04 细胞的生命历程-【新题速递】2022届江苏高三生物模拟试卷分类汇编(4月刊).docx专题04 细胞的生命历程-【新题速递】2022届江苏高三生物模拟试卷分类汇编(4月刊).docx
  • 专题04 细胞的生命历程-【口袋书】2022年高考生物备考系列(必备知识清单 思维导图).docx专题04 细胞的生命历程-【口袋书】2022年高考生物备考系列(必备知识清单 思维导图).docx
  • 专题04 细胞怎样构成生物体(知识清单)- 2023-2024学年七年级生物上学期期末考点大串讲(人教版).docx专题04 细胞怎样构成生物体(知识清单)- 2023-2024学年七年级生物上学期期末考点大串讲(人教版).docx
  • 专题04 细胞分裂过程中的相关曲线图-冲刺2022年高考生物热点图片题型提分攻略.docx专题04 细胞分裂过程中的相关曲线图-冲刺2022年高考生物热点图片题型提分攻略.docx
  • 专题04 简答题【专项训练】-2020-2021学年八年级道德与法治下册期中专项复习(部编版).docx专题04 简答题【专项训练】-2020-2021学年八年级道德与法治下册期中专项复习(部编版).docx
  • 专题04 第4天-字母GHI开头.docx专题04 第4天-字母GHI开头.docx
  • 专题04 立体几何(解析版).docx专题04 立体几何(解析版).docx
  • 专题04 立体几何(原卷版).docx专题04 立体几何(原卷版).docx
  • 专题04 立体几何-【大题精做】冲刺2023年高考数学大题突破 限时集训(新高考专用)(原卷版).docx专题04 立体几何-【大题精做】冲刺2023年高考数学大题突破 限时集训(新高考专用)(原卷版).docx
  • 专题04 科学的测量 -2024年浙江省科学中考一轮复习 .docx专题04 科学的测量 -2024年浙江省科学中考一轮复习 .docx
  • 专题04 离子反应的应用-【题高分】2022-2023学年高一化学同步教学专题讲义(人教版2019必修第一册).docx专题04 离子反应的应用-【题高分】2022-2023学年高一化学同步教学专题讲义(人教版2019必修第一册).docx
  • 专题04 碳和碳的化合物(讲义)(解析版).docx专题04 碳和碳的化合物(讲义)(解析版).docx
  • 专题04 碳和碳的化合物(练习)(解析版).docx专题04 碳和碳的化合物(练习)(解析版).docx
  • 专题04 碳和碳的化合物(练习)(原卷版).docx专题04 碳和碳的化合物(练习)(原卷版).docx
  • 专题04 碳和碳的化合物(测试)(解析版).docx专题04 碳和碳的化合物(测试)(解析版).docx
  • 专题04 碳和碳的化合物(测试)(原卷版).docx专题04 碳和碳的化合物(测试)(原卷版).docx
  • 专题04 知识点复习-2022-2023学年高一英语上学期期中复习查缺补漏冲刺满分(人教版2019).docx专题04 知识点复习-2022-2023学年高一英语上学期期中复习查缺补漏冲刺满分(人教版2019).docx
  • 专题04 相关点法确定圆的轨迹-2021-2022学年高二数学培优辅导(人教A版2019选择性必修第一册).docx专题04 相关点法确定圆的轨迹-2021-2022学年高二数学培优辅导(人教A版2019选择性必修第一册).docx
  • 专题04 相似遇到二次函数(解析版).docx专题04 相似遇到二次函数(解析版).docx
  • 专题04 相似遇到二次函数(原卷版).docx专题04 相似遇到二次函数(原卷版).docx
  • 专题04 直线的倾斜角与斜率(原卷版)-【重难点突破】2021-2022学年高二数学上册常考题专练(人教A版2019选择性必修第一册).docx专题04 直线的倾斜角与斜率(原卷版)-【重难点突破】2021-2022学年高二数学上册常考题专练(人教A版2019选择性必修第一册).docx
  • 专题04 电离平衡 水的电离和溶液的pH(解析版).docx专题04 电离平衡 水的电离和溶液的pH(解析版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1