分享
分享赚钱 收藏 举报 版权申诉 / 34

类型专题04 统计概率(解答题11种考法)(精练)(原卷版).docx

  • 上传人:a****
  • 文档编号:828696
  • 上传时间:2025-12-15
  • 格式:DOCX
  • 页数:34
  • 大小:671.28KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题04 统计概率解答题11种考法精练原卷版 专题 04 统计 概率 解答 11 种考法 精练 原卷版
    资源描述:

    1、专题04 统计概率(解答题11种考法)1(2023陕西咸阳校考三模)某大型企业生产的产品细分为个等级,为了解这批产品的等级分布情况,从流水线上随机抽取了件进行检测、分类和统计,并依据以下规则对产品进行评分:检测到级到级的评为优秀,检测到级到6级的评为良好,检测到级到级的评为合格,检测到级的评为不合格.以下把频率视为概率,现有如下检测统计表:等级12345678910频数10901001501502001001005050(1)从这件产品中随机抽取件,请估计这件产品评分为优良的概率;(2)从该企业的流水线上随机抽取件产品,设这件产品中评分为优秀的产品个数为,求的分布列及期望.2(2023湖南衡阳

    2、校联考模拟预测)某区在高中阶段举行的物理实验技能操作竞赛分基本操作与技能操作两步进行,第一步基本操作:每位参赛选手从类7道题中任选4题进行操作,操作完后正确操作超过两题的(否则终止比赛),才能进行第二步技能操作:从类5道题中任选3题进行操作,直至操作完为止.类题操作正确得10分,类题操作正确得20分.以两步总分和决定优胜者.总分80分或90分为二等奖,100分为一等奖.某校选手李明类7题中有5题会操作,类5题中每题正确操作的概率均为,且各题操作互不影响.(1)求李明被终止比赛的概率;(2)现已知李明类题全部操作正确,求李明类题操作完后得分的分布列及期望;(3)求李明获二等奖的概率.3(2023

    3、新疆乌鲁木齐统考二模)2022年的男足世界杯在卡塔尔举办,参赛的32支球队共分为8个小组,每个小组有4支球队,小组赛采取单循环赛制,即每支球队都要和同组的其他3支球队各比赛一场.每场比赛获胜的球队积3分,负队积0分.若打平则双方各积1分,三轮比赛结束后,积分从多到少排名靠前的2支球队小组出线(如果积分相等,还要按照其他规则来排名).已知甲、乙、丙、丁4支球队分在同一个组,且甲队与乙、丙、丁3支球队比赛获胜的概率分别为,与三支球队打平的概率均为,每场比赛的结果相互独立.(1)某人对甲队的三轮小组赛结果进行了预测,他认为三场都会是平局,记随机变量X“结果预测正确的场次”,求X的分布列和数学期望;(

    4、2)假设各队先后对阵顺序完全随机,记甲队至少连续获胜两场的概率为p,那么甲队在第二轮比赛对阵哪个对手时,p的取值最大,这个最大值是多少?4(2023广东佛山校联考模拟预测)某地区举行数学核心素养测评,要求以学校为单位参赛,最终学校和学校进入决赛决赛规则如下:现有甲、乙两个纸箱,甲箱中有4道选择题和2道填空题,乙箱中有3道选择题和3道填空题,决赛由两个环节组成,环节一:要求两校每位参赛同学在甲或乙两个纸箱中随机抽取两题作答,作答后放回原箱;环节二:由学校和学校分别派出一名代表进行比赛两个环节按照相关比赛规则分别累计得分,以累计得分的高低决定名次(1)环节一结束后,采用样本量比例分配的分层随机抽样

    5、,如果不知道样本数据,只知道从学校抽取12人,其答对题目的平均数为1,方差为1,从学校抽取8人,其答对题目的平均数为1.5,方差为0.25,求这20人答对题目的均值与方差;(2)环节二,学校代表先从甲箱中依次抽取了两道题目,答题结束后将题目一起放入乙箱中,然后学校代表再从乙箱中抽取题目,已知学校代表从乙箱中抽取的第一题是选择题,求学校代表从甲箱中取出的是两道选择题的概率5(2023黑龙江哈尔滨哈尔滨市第六中学校校考三模)哈六中举行数学竞赛,竞赛分为初赛和决赛两阶段进行.初赛采用“两轮制”方式进行,要求每个学年派出两名同学,且每名同学都要参加两轮比赛,两轮比赛都通过的同学才具备参与决赛的资格.高

    6、三学年派出甲和乙参赛.在初赛中,若甲通过第一轮与第二轮比赛的概率分别是,乙通过第一轮与第二轮比赛的概率分别是,且每名同学所有轮次比赛的结果互不影响.(1)若高三学年获得决赛资格的同学个数为,求的分布列和数学期望.(2)已知甲和乙都获得了决赛资格.决赛的规则如下:将问题放入两个纸箱中,箱中有3道选择题和2道填空题,箱中有3道选择题和3道填空题.决赛中要求每位参赛同学在两个纸箱中随机抽取两题作答.甲先从箱中依次抽取2道题目,答题结束后将题目一起放入箱中,然后乙再抽取题目.已知乙从箱中抽取的第一题是选择题,求甲从箱中抽出的是2道选择题的概率.6(2023广西柳州统考模拟预测)新高考改革后广西省采用“

    7、3+1+2”高考模式,“3”指的是语文数学外语,这三门科目是必选的;“1”指的是要在物理历史里选一门;“2”指考生要在生物学化学思想政治地理4门中选择2门.(1)若按照“3+1+2”模式选科,求甲乙两个学生恰有四门学科相同的选法种数;(2)某教育部门为了调查学生语数外三科成绩,现从当地不同层次的学校中抽取高一学生5000名参加语数外的网络测试满分450分,假设该次网络测试成绩服从正态分布.估计5000名学生中成绩介于120分到300分之间有多少人;某校对外宣传“我校200人参与此次网络测试,有10名同学获得430分以上的高分”,请结合统计学知识分析上述宣传语的可信度.附:,.7(2023福建厦

    8、门厦门一中校考二模)法国数学家庞加莱是个喜欢吃面包的人,他每天都会到同一家面包店购买一个面包.该面包店的面包师声称自己所出售的面包的平均质量是,上下浮动不超过.这句话用数学语言来表达就是:每个面包的质量服从期望为,标准差为的正态分布.(1)已知如下结论:若,从X的取值中随机抽取个数据,记这k个数据的平均值为Y,则随机变量,利用该结论解决下面问题.(i)假设面包师的说法是真实的,随机购买25个面包,记随机购买25个面包的平均值为Y,求;(ii)庞加莱每天都会将买来的面包称重并记录,25天后,得到的数据都落在上,并经计算25个面包质量的平均值为.庞加莱通过分析举报了该面包师,从概率角度说明庞加莱举

    9、报该面包师的理由;(2)假设有两箱面包(面包除颜色外,其他都一样),已知第一箱中共装有6个面包,其中黑色面包有2个;第二箱中共装有8个面包,其中黑色面包有3个.现随机挑选一箱,然后从该箱中随机取出2个面包.求取出黑色面包个数的分布列及数学期望.附:随机变量服从正态分布,则,;通常把发生概率小于的事件称为小概率事件,小概率事件基本不会发生.8(2023江西赣州统考模拟预测)随着2023年中国诗词大会在央视持续热播,它将经典古诗词与新时代精神相结合,使古诗词绽放出新时代的光彩,由此,它极大地鼓舞了人们学习古诗词的热情,掀起了学习古诗词的热潮.某省某校为了了解高二年级全部1000名学生学习古诗词的情

    10、况,举行了“古诗词”测试,现随机抽取100名学生,对其测试成绩(满分:100分)进行统计,得到样本的频率分布直方图如图所示.(1)根据频率分布直方图,估计这100名学生测试成绩的平均数(单位:分);(同一组中的数据用该组区间的中点值为代表)(2)若该校高二学生“古诗词”的测试成绩X近似服从正态分布,其中近似为样本平均数,规定“古诗词”的测试成绩不低于87分的为“优秀”,据此估计该校高二年级学生中成绩为优秀的人数;(取整数)(3)现该校为迎接该省的2023年第三季度“中国诗词大会”的选拔赛,在五一前夕举行了一场校内“诗词大会”.该“诗词大会”共有三个环节,依次为“诗词对抗赛”“画中有诗”“飞花令

    11、车轮战”,规则如下:三个环节均参与,在前两个环节中获胜得1分,第三个环节中获胜得4分,输了不得分.若学生甲在三个环节中获胜的概率依次为,假设学生甲在各环节中是否获胜是相互独立的.记学生甲在这次“诗词大会”中的累计得分为随机变量,求的分布列和数学期.(参考数据:若,则,.9(2023福建宁德福鼎市第一中学校考模拟预测)某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,并绘制了如图所示的频率分布直方图,规定成绩为80分及以上者晋级成功,否则晋级失败 (1)求图中的值;(2)根据已知条件完成下面列联表,并判断能否有的把握认为能否晋级成功与性别有关;晋级情况性别晋级成功晋级失败总计男

    12、16女50总计(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为,求的分布列与数学期望参考公式:,其中0.100.050.0250.0100.0012.7063.8415.0246.63510.82810(2023广东韶关统考模拟预测)研究表明,如果温差本大,人们不注意保暖,可能会导致自身受到风寒刺激,增加感冒患病概率,特别是对于几童以及年老体弱的人群,要多加防范某中学数学建模社团成员研究了昼夜温差大小与某小学学生患感冒就诊人数多少之间的关系,他们记录了某六天的温差,并到校医室查阅了这六天中每天学生新增感冒就诊的人数,得到数据如下:日期第一天第二天第

    13、三天第四天第五天第六天昼夜温差x()47891412新增感就诊人数y(位)参考数据:,(1)已知第一天新增感冒就的学生中有4位男生,从第一天多增的感冒就诊的学生中随机取2位,其中男生人数记为X,若抽取的2人中至少有一位女生的概率为,求随机变量X的分布列和数学期望;(2)已知两个变量x与y之间的样本相关系数,请用最小二乘法求出y关于x的经验回归方程,据此估计昼夜温差为15时,该校新增感冒就诊的学生人数. 参考数据: ,11(2023河南襄城高中校联考模拟预测)某公司是一家集无人机特种装备的研发、制造与技术服务的综合型科技创新企业该公司生产的甲、乙两种类型无人运输机性能都比较出色,但操控水平需要十

    14、分娴熟,才能发挥更大的作用已知在单位时间内,甲、乙两种类型的无人运输机操作成功的概率分别为和,假设每次操作能否成功相互独立(1)该公司分别收集了甲型无人运输机在5个不同的地点测试的两项指标数,(),数据如下表所示:地点1地点2地点3地点4地点5甲型无人运输机指标数24568甲型无人运输机指标数34445试求与间的相关系数,并利用说明与是否具有较强的线性相关关系;(若,则线性相关程度很高)(2)操作员连续进行两次无人机的操作有两种方案:方案一:在初次操作时,随机选择两种无人运输机中的一种,若初次操作成功,则第二次继续使用该类型设备;若初次操作不成功,则第二次使用另一类型进行操作方案二:在初次操作

    15、时,随机选择两种无人运输机中的一种,无论初次操作是否成功,第二次均使用初次所选择的无人运输机进行操作假定方案选择及操作不相互影响,试比较这两种方案的操作成功的次数的期望值附:参考公式及数据:,12(2023上海浦东新华师大二附中校考模拟预测)为帮助乡村脱贫,某勘探队计划了解当地矿脉某金属的分布情况,测得了平均金属含量(单位:)与样本对原点的距离(单位:)的数据,并作了初步处理,得到了下面的一些统计量的值.(表中)660(1)利用样本相关系数的知识,判断与哪一个更适宜作为平均金属含量关于样本对原点的距离的回归方程类型?(2)根据(1)的结果回答下列问题:(i)建立关于的回归方程;(ii)样本对原

    16、点的距离时,金属含量的预报值是多少?(3)已知该金属在距离原点米时的平均开采成本(单位:元)与关系为,根据(2)的结果回答,为何值时,开采成本最大?13(2023江西校联考二模)2023年高考进入倒计时,为了帮助学子们在紧张的备考中放松身心,某重点高中通过开展形式多样的减压游戏,确保同学们以稳定心态,良好地状态迎战高考,游戏规则如下:盒子中初始装有2个白球和1个红球各一个,每次有放回的任取一个,连续取两次,将以上过程记为一轮.如果每一轮取到的两个球都是红球,则记该轮为成功,否则记为失败.在抽取过程中,如果某一轮成功,则停止;否则,在盒子中再放入一个白球,然后接着进行下一轮抽球,如此不断继续下去

    17、,直至成功.(1)如果某同学进行该抽球游戏时,最多进行三轮,即使第三轮不成功,也停止抽球,记其进行抽球试验的轮次数为随机变量,求的分布列和数学期望;(2)为验证抽球试验成功的概率不超过,假设有1000名学生独立的进行该抽球试验,记表示成功时抽球试验的轮次数,表示对应的人数,部分统计数据如下:1234512062332015求关于的回归方程,并通过回归方程预测成功的总人数(取整数部分);(3)证明:附:经验回归方程系数:,;参考数据:,(其中,)14(2023山东日照统考二模)云计算是信息技术发展的集中体现,近年来,我国云计算市场规模持续增长.从中国信息通信研究院发布的云计算白皮书(2022年)

    18、可知,我国2017年至2021年云计算市场规模数据统计表如下:年份2017年2018年2019年2020年2021年年份代码x12345云计算市场规模y/亿元692962133420913229经计算得:=36.33,=112.85. (1)根据以上数据,建立y关于x的回归方程(为自然对数的底数).(2)云计算为企业降低生产成本提升产品质量提供了强大助推力.某企业未引入云计算前,单件产品尺寸与标准品尺寸的误差,其中m为单件产品的成本(单位:元),且=0.6827;引入云计算后,单件产品尺寸与标准品尺寸的误差.若保持单件产品的成本不变,则将会变成多少?若保持产品质量不变(即误差的概率分布不变),

    19、则单件产品的成本将会下降多少?附:对于一组数据其回归直线的斜率和截距的最小二乘估计分别为=,.若,则, 15(2023辽宁鞍山统考二模)2020年,是人类首次成功从北坡登顶珠峰60周年,也是中国首次精确测定并公布珠峰高程的45周年.华为帮助中国移动开通珠峰峰顶5G,有助于测量信号的实时开通,为珠峰高程测量提供通信保障,也验证了超高海拔地区5G信号覆盖的可能性,在持续高风速下5G信号的稳定性,在条件恶劣地区通过简易设备传输视频信号的可能性.正如任总在一次采访中所说:“华为公司价值体系的理想是为人类服务.”有人曾问,在珠峰开通5G的意义在哪里?“我认为它是科学技术的一次珠峰登顶,告诉全世界,华为5

    20、G、中国5G的底气来自哪里.现在,5G的到来给人们的生活带来更加颠覆性的变革,某IT公司基于领先技术的支持,5G经济收入在短期内逐月攀升,该IT公司在1月份至6月份的5G经济收入y(单位:百万元)关于月份x的数据如下表所示,并根据数据绘制了如图所示的散点图.月份x123456收入y(百万元)6.68.616.121.633.041.0(1)根据散点图判断,与(a,b,c,d均为常数)哪一个更适宜作为5G经济收入y关于月份x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的结果及表中的数据,求出y关于x的回归方程,并预测该公司7月份的5G经济收入.(结果保留小数点后两位)(3)从前

    21、6个月的收入中抽取2个,记收入超过20百万元的个数为X,求X的分布列和数学期望.参考数据:3.5021.152.8517.70125.356.734.5714.30其中,设(i=1,2,3,4,5,6).参考公式:对于一组具有线性相关关系的数据(,)(i=1,2,3,n),其回归直线的斜率和截距的最小二乘估计公式分别为,.16(2023河南校联考模拟预测)小李从家出发步行前往公司上班,公司要求不晚于8点整到达,否则视为迟到.小李上班路上需要经过4个路口,每个路口遇到红灯的概率均为,且相互独立.已知每遇到红灯的平均等候时长皆为1分钟,若没有遇到任何红灯则小李仅需10分钟即可到达公司.求:(1)要

    22、保证不迟到的概率高于90%,小李最晚在几点几分从家出发;(2)若小李连续两天7点48分从家出发,则恰有一天迟到的概率;(3)小李上班路上的平均时长.17(2023河北秦皇岛校联考模拟预测)某班从6名男生和4名女生中,随机抽取5人组成数学兴趣小组,另5人组成物理兴趣小组(1)求数学兴趣小组中包含男生A,但不包含女生a的概率;(2)用X表示物理兴趣小组中的女生人数,求X的分布列与数学期望18(2023福建福州福建省福州第一中学校考二模)国内某大学想了解本校学生的运动状况,采用简单随机抽样的方法从全校学生中抽取2000人,调查他们平均每天运动的时间(单位:小时),统计表明该校学生平均每天运动的时间范

    23、围是,记平均每天运动的时间不少于2小时的学生为“运动达人”,少于2小时的学生为“非运动达人”.整理分析数据得到下面的列联表:单位:人性别运动时间合计运动达人非运动达人男生11003001400女生400200600合计15005002000零假设为:运动时间与性别之间无关联.根据列联表中的数据,算得,根据小概率值的独立性检验,则认为运动时间与性别有关,此推断犯错误的概率不大于.(1)如果将表中所有数据都缩小为原来的,在相同的检验标准下,再用独立性检验推断运动时间与性别之间的关联性,结论还一样吗?请用统计语言解释其中的原因.(2)采用样本性别比例分配的分层随机抽样抽取20名同学,并统计每位同学的

    24、运动时间,统计数据为:男生运动时间的平均数为2.5,方差为1;女生运动时间的平均数为1.5,方差为0.5,求这20名同学运动时间的均值与方差.附:,其中.临界值表:0.10.050.010.0050.0012.7063.8416.6357.87910.82819(2023江西南昌江西师大附中校考三模)足球运动的发展离不开足球文化与足球运动兴趣的培养.2022年世界杯的开赛像春风一样吹暖了大地,某足球队的训练趁机搞得热火朝天.同时又开展“赢积分换奖励”的趣味活动:将球门分为9个区域(如图),在点球区将球踢中、号区域积3分,踢中、号区域积2分,踢中号区域积1分,末踢中球门区域不积分.有甲乙两名球员

    25、踢中、号区域的概率都是,踢中、号区域的概率都是,踢中号区域的概率为.(1)设甲连踢3球的积分和为,求的概率;(2)设甲乙各踢一球的积分和为,求的分布列与期望值.20(2023江苏常州江苏省前黄高级中学校考模拟预测)中日围棋擂台赛是由中国围棋队与日本围棋队各派若干名棋手,以擂台制形式举行的围棋团体赛.这是中国和国外开设的最早的围棋对抗赛,由中国围棋协会、日本棋院和中国新体育杂志社联合举办,日本电器公司(NEC)赞助,因此也称NEC杯中日围棋擂台赛.该赛事从1984年开始至1996年停办,共进行了11届,结果中国队以7比4的总比分获胜.该赛事对中国围棋甚至世界围棋发展产生了很大影响,被认为是现代围

    26、棋最成功的比赛之一.中日围棋擂台赛由中日双方各派同样数量的若干名棋手组成队伍,两队各设一名主帅,采用打擂台的形式,决出最后的胜负.比赛事先排定棋手的上场顺序(主帅最后上场),按顺序对局,胜者坐擂,负方依次派遣棋手打擂,直至一方“主帅”被击败为止.设中、日两国围棋队各有名队员,按事先排好的顺序进行擂台赛,中国队的名队员按出场的先后顺序记为;日本队的名队员按出场的先后顺序记为.假设胜的概率为(为常数).(1)当时,若每个队员实力相当,求中国队有四名队员被淘汰且最后战胜日本队的概率;(2)记中国队被淘汰人且中国队获得擂台赛胜利的概率为,求的表达式;(3)写出中国队获得擂台赛胜利的概率的表达式(不用说

    27、明理由).21(2023山东淄博统考三模)有一大批产品等待验收,验收方案如下:方案一:从中任取6件产品检验,次品件数大于1拒收;方案二:依次从中取4件产品检验;若取到次品,则停止抽取,拒收;直到第4次抽取后仍无次品,通过验收. (1)若本批产品次品率为,选择“方案二”,求需要抽取次数X的均值;(2)若本批产品次品率为,比较选择哪种方案容易通过验收?22(2023上海上海市七宝中学校考模拟预测)一场始于烟火,归于真诚的邂逅,让无数人赴山赶海“进淄赶烤”,淄博某烧烤店趁机推出150元烧烤套餐.某同学调研发现,烧烤店成本(单位:千元,包含人工成本、原料成本、场地成本、设备损耗等各类成本)与每天卖出套

    28、餐数(单位:份)的关系如下:1346756.577.58与可用回归方程(其中为常数)进行模拟参考数据与公式:设,则线性回归直线中,0.546.81.530.45(1)试预测该烧烤店一天卖出100份的利润是多少元(利润=售价-成本,结果精确到1元)(2)据统计,由于烧烤的火爆,饮料需求也激增.4月份的连续16天中某品牌饮料每天为淄博配送的箱数的频率分布直方图,用这16天的情况来估计相应的概率供货商拟购置辆小货车专门运输该品牌饮料,一辆货车每天只能运营一趟,每辆车每趟最多只能装载40箱该饮料,满载发车,否则不发车若发车,则每辆车每趟可获利500元;若未发车,则每辆车每天平均亏损200元若或4,请从

    29、每天的利润期望角度给出你的建议23(2023辽宁抚顺校考模拟预测)十四届全国人大一次会议于2023年3月5日在北京顺利召开,会议过后,某市宣传部组织市民积极参加“学习十四大”知识竞赛,并从所有参赛市民中随机抽取了100人,统计了他们的竞赛成绩,制成了如图所示的频率分布直方图.(1)求这100位市民竞赛成绩的第75百分位数;(2)该市某企业赞助了本次知识竞赛,并对每位参赛市民给予一定的奖励,奖励方案有以下两种:方案一:按竞赛成绩进行分类奖励:当时,每人奖励60元;当时,每人奖励120元;当时,每人奖励180元.方案二:利用抽奖的方式获得奖金,其中竞赛成绩低于样本中位数的只有一次抽奖机会,竞赛成绩

    30、不低于样本中位数的有两次抽奖机会,每次抽奖的奖金及对应的概率如表.奖金60120概率若该市某社区的所有参赛市民决定选择同一种奖励方案,试利用样本的频率估计总体的概率,从数学期望的角度分析,该社区参赛市民选择哪种奖励方案更有利?24(2023江苏苏州校联考三模)在一个抽奖游戏中,主持人从编号为的四个外观相同的空箱子中随机选择一个,放入一件奖品,再将四个箱子关闭.主持人知道奖品在哪个箱子里.游戏规则是主持人请抽奖人在这四个箱子中选择一个,若奖品在此箱子里,则奖品由获奖人获得.现有抽奖人甲选择了2号箱,在打开2号箱之前,主持人先打开了另外三个箱子中的一个空箱子.按游戏规则,主持人将随机打开甲的选择之

    31、外的一个空箱子.(1)计算主持人打开4号箱的概率;(2)当主持人打开4号箱后,现在给抽奖人甲一次重新选择的机会,请问他是坚持选2号箱,还是改选1号或3号箱?(以获得奖品的概率最大为决策依据)25(2023江苏南通统考模拟预测)某微型电子集成系统可安装3个或5个元件,每个元件正常工作的概率均为且各元件是否正常工作相互独立若有超过一半的元件正常工作,则该系统能稳定工作(1)若该系统安装了3个元件,且,求它稳定工作的概率;(2)试比较安装了5个元件的系统与安装了3个元件的系统哪个更稳定26(2023湖北武汉华中师大一附中校考模拟预测)杭州2022年第19届亚运会(The 19th Asian Gam

    32、es Hangzhou 2022)将于2023年9月23日至10月8日举办本届亚运会共设40个竞赛大项,包括31个奥运项目和9个非奥运项目同时,在保持40个大项目不变的前提下,增设了电子竞技项目与传统的淘汰赛不同,近年来一个新型的赛制“双败赛制”赢得了许多赛事的青睐传统的淘汰赛失败一场就丧失了冠军争夺的权利,而在双败赛制下,每人或者每个队伍只有失败了两场才会淘汰出局,因此更有容错率假设最终进入到半决赛有四支队伍,淘汰赛制下会将他们四支队伍两两分组进行比赛,胜者进入到总决赛,总决赛的胜者即为最终的冠军双败赛制下,两两分组,胜者进入到胜者组,败者进入到败者组,胜者组两个队伍对决的胜者将进入到总决赛

    33、,败者进入到败者组之前进入到败者组的两个队伍对决的败者将直接淘汰,胜者将跟胜者组的败者对决,其中的胜者进入总决赛,最后总决赛的胜者即为冠军双败赛制下会发现一个有意思的事情,在胜者组中的胜者只要输一场比赛即总决赛就无法拿到冠军,但是其它的队伍却有一次失败的机会,近年来从败者组杀上来拿到冠军的不在少数,因此很多人戏谑这个赛制对强者不公平,是否真的如此呢?这里我们简单研究一下两个赛制假设四支队伍分别为,其中对阵其他三个队伍获胜概率均为,另外三支队伍彼此之间对阵时获胜概率均为最初分组时同组,同组(1)若,在淘汰赛赛制下,获得冠军的概率分别为多少?(2)分别计算两种赛制下获得冠军的概率(用表示),并据此

    34、简单分析一下双败赛制下对队伍的影响,是否如很多人质疑的“对强者不公平”?27(2023广东东莞东莞实验中学校考模拟预测)为倡导公益环保理念,培养学生社会实践能力,某中学开展了旧物义卖活动,所得善款将用于捐赠“圆梦困境学生”计划.活动共计50多个班级参与,1000余件物品待出售.摄影社从中选取了20件物品,用于拍照宣传,这些物品中,最引人注目的当属优秀毕业生们的笔记本,已知高三1,2,3班分别有,的同学有购买意向.假设三个班的人数比例为.(1)现从三个班中随机抽取一位同学:(i)求该同学有购买意向的概率;(ii)如果该同学有购买意向,求此人来自2班的概率;(2)对于优秀毕业生的笔记本,设计了一种

    35、有趣的“掷骰子叫价确定购买资格”的竞买方式:统一以0元为初始叫价,通过掷骰子确定新叫价,若点数大于2,则在已叫价格基础上增加1元更新叫价,若点数小于3,则在已叫价格基础上增加2元更新叫价;重复上述过程,能叫到10元,即获得以10元为价格的购买资格,未出现叫价为10元的情况则失去购买资格,并结束叫价.若甲同学已抢先选中了其中一本笔记本,试估计其获得该笔记本购买资格的概率(精确到0.01).28(2023山东沂水县第一中学校联考模拟预测)在新高考的数学试卷中,有4道题为多项选择题,在每个试题所给的4个选项中有多项符合题目要求,其评分规则为:全部选对得5分,部分选对得2分,有错选得0分(1)若某两个

    36、多项选择题中分别有2个和3个正确选项如果小茗同学不能判断两个题中任何一个选项是否符合题目要求他每个题均随机选取了2项,记他这两题的总得分为X,求X的分布列和数学期望;(2)若某个多项选择题所给的四个选项中有3个符合题目要求,小茗同学只能判断其中的一个选项符合题目要求,不能判断其它选项是否符合题目要求,若你是小茗同学,除了能判断的符合题目要求的选项外,从得分均值的角度分析,你是否再随机选取1个或2个选项作为答题结果?请说明理由29(2023湖北武汉统考三模)某考生在做高考数学模拟题第12题时发现不会做已知该题有四个选项,为多选题,至少有两项正确,至多有3个选项正确评分标准为:全部选对得5分,部分

    37、选对得2分,选到错误选项得0分设此题正确答案为2个选项的概率为已知该考生随机选择若干个(至少一个)(1)若,该考生随机选择2个选项,求得分X的分布列及数学期望;(2)为使他此题得分数学期望最高,请你帮他从以下三种方案中选一种,并说明理由方案一:随机选择一个选项;方案二:随机选择两个选项;方案三:随机选择三个选项30(2023安徽铜陵统考三模)某校承接了2023年某大型考试的笔试工作,考试前,学校将高二年级的201205五个班级内部的墙壁装饰画取下后打包,统一放置,考试结束后再恢复原位.学校安排了三位校工甲、乙、丙进行该项工作,每位校工至少负责一个班级的装饰画复原工作.已知每位校工能够完全还原一

    38、个班级装饰画的概率均为,并且他们之间的工作相互独立.(1)求校工甲将自己负责的所有班级的装饰画完全还原的概率;(2)设校工乙能够完全还原的班级数为X,求X的分布列和数学期望.31(2023重庆统考三模)投壶是从先秦延续至清末的中国传统礼仪和宴饮游戏,投壶礼来源于射礼投壶的横截面是三个圆形,投掷者站在距离投壶一定距离的远处将箭羽投向三个圆形的壶口,若箭羽投进三个圆形壶口之一就算投中为弘扬中华传统文化,某次文化活动进行了投壶比赛,比赛规定投进中间较大圆形壶口得分,投进左右两个小圆形壶口得分,没有投进壶口不得分甲乙两人进行投壶比赛,比赛分为若干轮,每轮每人投一支箭羽,最后将各轮所得分数相加即为该人的

    39、比赛得分,比赛得分高的人获胜已知甲每轮投一支箭羽进入中间大壶口的概率为,投进入左右两个小壶口的概率都是,乙每轮投一支箭羽进入中间大壶口的概率为,投进入左右两个小壶口的概率分别是和,甲乙两人每轮是否投中相互独立,且两人各轮之间是否投中也互相独立若在最后一轮比赛前,甲的总分落后乙分,设甲最后一轮比赛的得分为,乙最后一轮比赛的得分为(1)求甲最后一轮结束后赢得比赛的概率;(2)求的数学期望32(2023上海徐汇上海市南洋模范中学校考三模)探索浩瀚宇宙,发展航天事业,建设航天强国,是我们不懈追求的航天梦某学校为了了解学生对航天知识的知晓情况,组织开展航天知识竞赛活动本次活动中有一个风险答题环节,竞赛规

    40、则如下:风险题分为10分、20分、30分三类,答对得相应分数,答错扣相应分数,每位选手可以从中任选三道题作答甲选手在回答风险题时,答对10分题的概率为0.9,答对20分题的概率为0.8,答对30分题的概率为0.5(1)若甲选手选三道题,第一道选择了10分题,第二道选择了20分题,第三道选择了30分题,求最终得分为0的概率(2)若甲选手第一道题选择30分风险题,第二道题和第三道题都选择20分的风险题作答,记他的最终得分为X,求X的分布列和数学期望33(2022北京统考高考真题)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到以上(含)的同学将获得优秀奖为预测获得优秀奖的人数及冠军得

    41、主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望E(X);(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)34(2023湖南长沙长沙市明德中学校考三模)甲、

    42、乙两选手进行一场体育竞技比赛,采用局胜制的比赛规则,即先赢下局比赛者最终获胜. 已知每局比赛甲获胜的概率为,乙获胜的概率为,比赛结束时,甲最终获胜的概率为.(1)若,结束比赛时,比赛的局数为,求的分布列与数学期望;(2)若采用5局3胜制比采用3局2胜制对甲更有利,即.(i)求的取值范围;(ii)证明数列单调递增,并根据你的理解说明该结论的实际含义.35(2023上海浦东新华师大二附中校考三模)某数学学习小组的7名学生在一次考试后调整了学习方法,一段时间后又参加了第二次考试两次考试的成绩如下表所示(满分100分): 学生1学生2学生3学生4学生5学生6学生7第一次82897892926581第二

    43、次83907595936176(1)从数学学习小组7名学生中随机选取1名,求该名学生第二次考试成绩高于第一次考试成绩的概率;(2)设表示第名学生第二次考试成绩与第一次考试成绩的差.从数学学习小组7名学生中随机选取2名,得到数据,定义随机变量,如下:(i)求的分布列和数学期望;(ii)设随机变量,的的方差分别为,试比较与的大小(结论不要求证明)26(2023重庆统考模拟预测)李医生研究当地成年男性患糖尿病与经常喝酒的关系,他对盲抽的60名成年男性作了调查,得到如下表统计数据,还知道被调查人中随机抽一人患糖尿病的概率为.经常喝酒不经常喝酒患糖尿病4没患糖尿病6(1)写出本研究的列联表,依据小概率值

    44、的独立性检验,判断当地成年男性患糖尿病是否和喝酒习惯有关联?(2)从该地任选一人,表示事件“选到的人经常喝酒”,表示事件“选到的人患糖尿病”,把与的比值叫“常喝酒和患糖尿病的关联指数”,记为.()利用该调查数据求的值;()证明:.参考公式及数表:,0.150.10.050.010.0050.0012.0722.7063.8416.6357.87910.82827(2023湖南长沙湖南师大附中校考三模)马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用其数学定义为:假设我们的序列状态是,那么时刻的状态的条件概

    45、率仅依赖前一状态,即现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为,且每局赌赢可以赢得1元,每一局赌徒赌输的概率为,且赌输就要输掉1元赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:一种是手中赌金为0元,即赌徒输光;一种是赌金达到预期的B元,赌徒停止赌博记赌徒的本金为,赌博过程如下图的数轴所示当赌徒手中有n元(,)时,最终输光的概率为,请回答下列问题:(1)请直接写出与的数值(2)证明是一个等差数列,并写出公差d(3)当时,分别计算,时,的数值,并结合实际,解释当时,的统计含义38(2023四川成都校考三模)某单位开展职工文体活动,其中跳棋项目比赛分为初赛和决赛,经过初赛后,甲、乙、丙三人进入决赛决赛采用以下规则:抽签确定先比赛的两人,另一人轮空,后面每局比赛由前一局胜者与轮空者进行,前一局负者轮空;甲、乙进行比赛,甲每局获胜的概率为,甲、丙进行比赛,甲每局获胜的概率为,乙、丙进行比赛,乙每局获胜的概率为;先取得两局胜者为比赛的冠军,比赛结束假定每局比赛无平局且每局比赛互相独立通过抽签,第一局由甲、乙进行比赛(1)求甲获得冠军的概率(2)记比赛结束时乙参加比赛的局数为,求的分布列和数学期望

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题04 统计概率(解答题11种考法)(精练)(原卷版).docx
    链接地址:https://www.ketangku.com/wenku/file-828696.html
    相关资源 更多
  • 专题11 阅读理解25篇(名校最新期末真题)-2021-2022学年八年级英语下学期期末复习查缺补漏冲刺满分(外研版).docx专题11 阅读理解25篇(名校最新期末真题)-2021-2022学年八年级英语下学期期末复习查缺补漏冲刺满分(外研版).docx
  • 专题11 阅读理解-应用文26篇 (解析版).docx专题11 阅读理解-应用文26篇 (解析版).docx
  • 专题11 阅读理解-应用文26篇 (原卷版).docx专题11 阅读理解-应用文26篇 (原卷版).docx
  • 专题11 阅读填表精练精析15篇(期中真题 名校模拟)-2022-2023学年九年级英语上学期期中考点大串讲(牛津译林版).docx专题11 阅读填表精练精析15篇(期中真题 名校模拟)-2022-2023学年九年级英语上学期期中考点大串讲(牛津译林版).docx
  • 专题11 阅读填表10篇-2023届九年级英语名校真题分类汇编(江苏专用).docx专题11 阅读填表10篇-2023届九年级英语名校真题分类汇编(江苏专用).docx
  • 专题11 阅读填表-冲刺2022年中考英语必考题型终极押题(无锡专用).docx专题11 阅读填表-冲刺2022年中考英语必考题型终极押题(无锡专用).docx
  • 专题11 阅读填表(期末真题 名校模拟)精练精析15篇-2022-2023学年九年级英语上学期期末复习查缺补漏冲刺满分(牛津译林版).docx专题11 阅读填表(期末真题 名校模拟)精练精析15篇-2022-2023学年九年级英语上学期期末复习查缺补漏冲刺满分(牛津译林版).docx
  • 专题11 阅读与书籍-备战2022中考英语语法填空热点话题 体裁分类训练(中考模拟题 名校真题).docx专题11 阅读与书籍-备战2022中考英语语法填空热点话题 体裁分类训练(中考模拟题 名校真题).docx
  • 专题11 闲暇活动-备战2022高考英语阅读七选五热点话题 体裁分类训练(高考模拟 名校真题).docx专题11 闲暇活动-备战2022高考英语阅读七选五热点话题 体裁分类训练(高考模拟 名校真题).docx
  • 专题11 问鼎中考状语从句在手-【口袋书】2022年中考英语背诵手册(牛津译林版).docx专题11 问鼎中考状语从句在手-【口袋书】2022年中考英语背诵手册(牛津译林版).docx
  • 专题11 透过语境巧记高考英语3500词.docx专题11 透过语境巧记高考英语3500词.docx
  • 专题11 选词填空-2022年江苏中考英语热点题型考前押题.docx专题11 选词填空-2022年江苏中考英语热点题型考前押题.docx
  • 专题11 辞赋第十一-2023年八年级寒假新名著《经典常谈》阅读 练习.docx专题11 辞赋第十一-2023年八年级寒假新名著《经典常谈》阅读 练习.docx
  • 专题11 轴对称与旋转变换(题型归纳)(解析版).docx专题11 轴对称与旋转变换(题型归纳)(解析版).docx
  • 专题11 轴对称与旋转变换(题型归纳)(原卷版).docx专题11 轴对称与旋转变换(题型归纳)(原卷版).docx
  • 专题11 语法选择精练精析15篇(期末真题 名校模拟)-2022-2023学年七年级英语下学期期末复习查缺补漏冲刺满分(人教版).docx专题11 语法选择精练精析15篇(期末真题 名校模拟)-2022-2023学年七年级英语下学期期末复习查缺补漏冲刺满分(人教版).docx
  • 专题11 语法填空精练精析20篇(期末真题 名校模拟)-2022-2023学年八年级英语下学期期末复习查缺补漏冲刺满分(外研版).docx专题11 语法填空精练精析20篇(期末真题 名校模拟)-2022-2023学年八年级英语下学期期末复习查缺补漏冲刺满分(外研版).docx
  • 专题11 语法填空之主谓一致100题-备战2023高考英语语法填空专项分类训练.docx专题11 语法填空之主谓一致100题-备战2023高考英语语法填空专项分类训练.docx
  • 专题11 词汇替换句式应用及高考应用文练习-备战2022年高考英语书面表达应用文满分攻略.docx专题11 词汇替换句式应用及高考应用文练习-备战2022年高考英语书面表达应用文满分攻略.docx
  • 专题11 设元的技巧_答案.docx专题11 设元的技巧_答案.docx
  • 专题11 记叙文文体知识.docx专题11 记叙文文体知识.docx
  • 专题11 认识化学元素(解析版).docx专题11 认识化学元素(解析版).docx
  • 专题11 被动语态80题(名校最新真题)-2022-2023学年九年级英语上学期期末复习查缺补漏冲刺满分(牛津上海版).docx专题11 被动语态80题(名校最新真题)-2022-2023学年九年级英语上学期期末复习查缺补漏冲刺满分(牛津上海版).docx
  • 专题11 补全对话精练精析20篇-2020-2021学年八年级英语下册期末复习挑战满分系列(人教新目标).docx专题11 补全对话精练精析20篇-2020-2021学年八年级英语下册期末复习挑战满分系列(人教新目标).docx
  • 专题11 统计(教师版).docx专题11 统计(教师版).docx
  • 专题11 统计(学生版).docx专题11 统计(学生版).docx
  • 专题11 细胞的增殖(精练)(原卷版).docx专题11 细胞的增殖(精练)(原卷版).docx
  • 专题11 细胞的增殖(串讲)(解析版).docx专题11 细胞的增殖(串讲)(解析版).docx
  • 专题11 细胞的增殖(串讲)(原卷版).docx专题11 细胞的增殖(串讲)(原卷版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1