分享
分享赚钱 收藏 举报 版权申诉 / 25

类型2022年解析卷人教版数学八年级上册期中综合复习试题 A卷(解析版).docx

  • 上传人:a****
  • 文档编号:712596
  • 上传时间:2025-12-13
  • 格式:DOCX
  • 页数:25
  • 大小:584.02KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2022年解析卷人教版数学八年级上册期中综合复习试题 A卷解析版 2022 解析 卷人教版 数学 年级 上册 期中 综合 复习 试题
    资源描述:

    1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版数学八年级上册期中综合复习试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,中,D是外一点, ,则()ABCD2、下列图形中,内角和等于3

    2、60的是()A三角形B四边形C五边形D六边形3、如图,在中,是的平分线,若,则 ()ABCD4、如图,已知,则图中全等三角形的总对数是A3B4C5D65、下列说法:若,则为的中点若,则是的平分线,则若,则,其中正确的有()A1个B2个C3个D4个二、多选题(5小题,每小题4分,共计20分)1、在自习课上,小红为了检测同学们的学习效果,提出如下四种说法,其中错误的说法是()A三角形有且只有一条中线B三角形的高一定在三角形内部C三角形的两边之差大于第三边D三角形按边分类可分为等腰三角形和不等边三角形2、以下列数字为长度的各组线段中,能构成三角形的有()A1,2,3B2,3,4C3,4,5D4,5,

    3、63、在下列正多边形组合中,能铺满地面的是() 线 封 密 内 号学级年名姓 线 封 密 外 A正八边形和正方形B正五边形和正八边形C正六边形和正三角形D正三角形和正方形4、(多选)如图,在RtABC中,BAC90,ACQBCQ,ADBC,AECE,AD与CQ交于点N,BE与CQ交于点M,下面说法正确的是()ASABESBCEBAQNANQCBAD2ACQDADBCABAC5、下列不是真命题的是()A如果 ab,ac,那么 bcB相等的角是对顶角C一个角的补角大于这个角D一个三角形中至少有两个锐角第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,ABC的中线BD、C

    4、E相交于点F,若BEF的面积是3,则ABC的面积是_2、正多边形的每个内角等于,则这个正多边形的边数为_条3、如图,BE交AC于点M,交CF于点D,AB交CF于点N,给出的下列五个结论中正确结论的序号为 ;4、如图,在ABC中,ACB90,ACBC,BECE,ADCE于D,AD2,BE1则DE_5、如图,四边形ABCD四边形ABCD,则A的大小是_四、解答题(5小题,每小题8分,共计40分)1、(2020锦州模拟)问题情境:已知,在等边ABC中,BAC与ACB的角平分线交于点O,点M、N分别在直线AC,AB上,且MON60,猜想CM、MN、AN三者之间的数量关系方法感悟:小芳的思考过程是在CM

    5、上取一点,构造全等三角形,从而解决问题; 线 封 密 内 号学级年名姓 线 封 密 外 小丽的思考过程是在AB取一点,构造全等三角形,从而解决问题;问题解决:(1)如图1,M、N分别在边AC,AB上时,探索CM、MN、AN三者之间的数量关系,并证明;(2)如图2,M在边AC上,点N在BA的延长线上时,请你在图2中补全图形,标出相应字母,探索CM、MN、AN三者之间的数量关系,并证明2、如图,已知:正方形,点,分别是,上的点,连接,且,求证:3、如图,AC,BD为四边形ABCD的对角线,ABC90,ABD+ADBACB,ADCBCD(1)求证:ADAC;(2)探求BAC与ACD之间的数量关系,并

    6、说明理由4、某数学兴趣小组在一次活动中进行了探究试验活动,请你来加入【探究与发现】(1)如图1,AD是的中线,延长AD至点E,使,连接BE,证明:【理解与应用】(2)如图2,EP是的中线,若,设,则x的取值范围是_(3)如图3,AD是的中线,E、F分别在AB、AC上,且,求证:5、如图,在中,点D为上一点,将沿翻折得到,与相交于点F,若平分,(1)求证:;(2)求的度数-参考答案-一、单选题1、D【解析】 线 封 密 内 号学级年名姓 线 封 密 外 【分析】设,则,由,即可求出【详解】设,则,故选:D【考点】本题考查了三角形内角和定理的应用,解题关键是灵活运用相关知识进行求解2、B【解析】【

    7、分析】根据多边形内角和公式,列式算出它是几边形【详解】解:由多边形内角和公式,解得故选:B【考点】本题考查多边形内角和公式,解题的关键是掌握多边形内角和公式3、A【解析】【分析】过点D作于点E,根据角平分线的性质得 ,DEDC再根据三角形面积公式即可求解【详解】解:过点D作于点E,在中,是的平分线,故答案为:A【考点】本题考查了角平分线的性质,三角形的面积,正确理解角平分线的性质是解本题的关键4、D 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】根据全等三角形的判定方法进行判断全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件【详解】解:ABDC,ADBC,DA

    8、C=BCA,CDB=ABD,DCA=BAC,ADB=CBD,又BE=DF,由ADB=CBD,DB=BD,ABD=CDB,可得ABDCDB;由DAC=BCA,AC=CA,DCA=BAC,可得ACDCAB;AO=CO,DO=BO,由DAO=BCO,AO=CO,AOD=COB,可得AODCOB;由CDB=ABD,COD=AOB,CO=AO,可得CODAOB;由DCA=BAC,COF=AOE,CO=AO,可得AOECOF;由CDB=ABD,DOF=BOE,DO=BO,可得DOFBOE;故选D【考点】本题主要考查了全等三角形的判定与性质的运用,解题时注意:若已知两边对应相等,则找它们的夹角或第三边;若已

    9、知两角对应相等,则必须再找一组对边对应相等,或者是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边5、A【解析】【分析】根据直线中点、角平分线、有理数大小比较以及绝对值的性质,逐一判定即可.【详解】当三点不在同一直线上的时候,点C不是AB的中点,故错误;当OC位于AOB的内部时候,此结论成立,故错误;当为负数时,故错误;若,则,故正确;故选:A.【考点】此题主要考查直线中点、角平分线、有理数大小比较以及绝对值的性质,熟练掌握,即可解题.二、多选题1、ABC【解析】【分析】三角形有三条中线对进行判断;钝角三角形三条高,有两条在三角形外部,对进行判断;根据三角形三边的关系对进行

    10、判断;根据三角形的分类对进行判断【详解】解:A三角形有3条中线,选项A的说法是错误的;B三角形的高不一定在三角形内部,选项B的说法是错误的;C三角形的两边之差小于第三边,选项C的说法是错误的;D三角形按边分类可分为等腰三角形和不等边三角形是正确的故答案为:ABC【考点】本题考查了三角形的有关概念,属于基础题型要注意等腰三角形与等边三角形两个概念的区别,掌 线 封 密 内 号学级年名姓 线 封 密 外 握三角形有三条中线;钝角三角形三条高,有两条在三角形外部,三角形三边的关系;三角形的分类是解题关键2、BCD【解析】【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项判断即

    11、可【详解】解:A不能组成三角形,该项不符合题意; B,该项符合题意;C,该项符合题意;D,该项符合题意;故选:BCD【考点】本题考查三角形的成立条件,掌握三角形的三边关系是解题的关键3、ACD【解析】【分析】正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360若能,则说明能铺满;反之,则说明不能铺满【详解】解:A、正方形的每个内角是90,正八边形的每个内角是135,由于902135360,故能铺满,符合题意;B、正五边形和正八边形内角分别为108、135,显然不能构成360的周角,故不能铺满,不合题意;C、正六边形和正三角形内角分别为120、60,由于604120360,

    12、故能铺满,符合题意;D、正三角形、正方形内角分别为60、90,由于603902360,故能铺满,符合题意故选:ACD【考点】本题考查了平面密铺的知识,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角4、ABCD【解析】【分析】根据三角形中位线的概念利用等底同高三角形面积相等判断;结合三角形外角的性质和同角的余角相等判断;根据同角的余角相等和角平分线的定义判断;利用三角形的面积公式判断【详解】解:AECE,ABE与BCE等底同高,SABESBCE,故A正确;在RtABC中,BAC90,ADBC,ABC+ACB=90,BAD+ABC=90,ABC=DAC,BAD=

    13、ACD,AQN=ABC+BCQ,ANQ=DAC+ACQ,ACQBCQ,AQNANQ,故B正确;BADACD=2ACQ,故C正确; 线 封 密 内 号学级年名姓 线 封 密 外 ,故D正确,故选:ABCD【考点】此题考查了三角形中线的性质,角平分线的定义,同角的余角相等等知识,题目难度不大,理解相关的概念正确推理论证是解题的关键5、ABC【解析】【分析】根据不等式的性质、对顶角的性质、三角形和补角的性质进行判断即可【详解】解:A、如果 ab,ac,不能判断b,c的大小,原命题是假命题;B、相等的角不一定是对顶角,原命题是假命题;C、一个角的补角不一定大于这个角,原命题是假命题;D、一个三角形中至

    14、少有两个锐角,原命题是真命题;故选:ABC【考点】本题考查了命题与定理的知识,解题的关键是了解不等式的性质、对顶角的性质、三角形和补角的性质,属于基础知识,难度不大三、填空题1、18【解析】【分析】由题意可知F为重心,则根据重心的性质有,又BEF与BCF等高,SBEF=3,立得SBFC=6,所以SBEC=9,最后根据三角形中线的性质求ABC面积即可【详解】解:ABC的中线BD、CE相交于点F,则点F为ABC的重心,由重心的性质可得:,BEF与BCF等高,SBEF=3,SBFC=6,则SBEC=SBEF+SBFC=3+6=9,又E为AB中点,SABC=2SBEC=29=18故答案为:18【考点】

    15、此题考查了三角形中线的性质以及三角形重心的性质,解题的关键是熟知重心到顶点的距离与重心到对边中点的距离之比为2:12、12【解析】【详解】多边形内角和为180(n-2),则每个内角为180(n-2)n,n=12,所以应填12.3、;【解析】【分析】先证明ABEACF,然后根据全等三角形的性质即可判定;利用全等三角形的性质即可判定;根据ASA即可证明三角形全等;无法证明该结论;根据ASA证明三角形全等即可 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:在ABE和ACF中,ABEACF(AAS),BAE=CAF,BE=CF,故正确,BAE-BAC=CAF-BAC,即1=2,故正确,AB

    16、EACF,AB=AC,在CAN和BAM中,CANBAM(ASA),故正确,CD=DN不能证明成立,故错误在AFN和AEM中,AFNAEM(ASA),故正确结论中正确结论的序号为;故答案为;【考点】本题主要考查了三角形全等的判定和性质,解题的关键是正确寻找全等三角形全等的条件4、1【解析】【分析】先证明ACDCBE,再求出DE的长,解决问题【详解】解:BECE于E,ADCE于D, 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:1【考点】此题考查三角形全等的判定和性质,掌握再全等三角形的判定和性质是解题的关键5、95【解析】【分析】根据两个多边形全等,则对应角相等四边形以及内角和即可完成

    17、【详解】四边形ABCD四边形ABCDD=D=130四边形ABCD的内角和为360A=360-B-C-D=95故答案为:95【考点】本题考查了多边形全等的性质、多边形的内角和定理,掌握多边形全等的性质是关键四、解答题1、(1)CMAN+MN,详见解析;(2)CMMNAN,详见解析【解析】【分析】(1)在AC上截取CDAN,连接OD,证明CDOANO,根据全等三角形的性质得到ODON,CODAON,证明DMONMO,得到DMMN,结合图形证明结论;(2)在AC延长线上截取CDAN,连接OD,仿照(1)的方法解答【详解】解:(1)CMAN+MN,理由如下:在AC上截取CDAN,连接OD,ABC为等边

    18、三角形,BAC与ACB的角平分线交于点O,OACOCA30,OAOC,在CDO和ANO中,CDOANO(SAS)ODON,CODAON,MON60,COD+AOM60,AOC120,DOM60,在DMO和NMO中, 线 封 密 内 号学级年名姓 线 封 密 外 DMONMO,DMMN,CMCD+DMAN+MN;(2)补全图形如图2所示:CMMNAN,理由如下:在AC延长线上截取CDAN,连接OD,在CDO和ANO中,CDOANO(SAS)ODON,CODAON,DOMNOM,在DMO和NMO中,DMONMO(SAS)MNDM,CMDMCDMNAN【考点】此题主要考查全等三角形的判定与性质,解题

    19、的关键是熟知等边三角形的性质及全等三角形的判定定理2、见解析【解析】【分析】将ABE绕点A逆时针旋转90得到ADG,根据旋转的性质可得GD=BE,AG=AE,DAG=BAE,然后求出FAG=EAF,再利用“边角边”证明AEF和AGF全等,根据全等三角形对应边相等可得EF=FG,即可得出结论【详解】如解图,将绕点逆时针旋转至的位置,使与重合,在和中, 线 封 密 内 号学级年名姓 线 封 密 外 ,【考点】本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,难点在于利用旋转变换作出全等三角形3、(1)见解析;(2)BAC2ACD;理由见解析.【解析】【分析】(1)利用直角三角形的两锐角互

    20、余、三角形的内角和定理、以及角的和差即可得;(2)先根据直角三角形的两锐角互余可得,再由题(1)的结论和推出,联立化简求解即可得.【详解】(1)在中,在中,即;(2),理由如下:由题(1)知,.【考点】本题考查了直角三角形的两锐角互余、三角形的内角和定理、以及角的和差,熟记三角形的内角和定理、直角三角形的性质是解题关键.4、(1)见解析;(2);(3)见解析【解析】【分析】(1)根据全等三角形的判定即可得到结论;(2)延长至点,使,连接,根据全等三角形的性质得到,根据三角形的三边关系即可得到结论;(3)延长FD至G,使得,连接BG,EG,结合前面的做题思路,利用三角形三边关系判断即可【详解】(

    21、1)证明:,(2);如图,延长至点,使,连接, 线 封 密 内 号学级年名姓 线 封 密 外 在与中,在中,即,的取值范围是;故答案为:;(3)延长FD至G,使得,连接BG,EG,在和中,在和中,在中,两边之和大于第三边,又,【考点】本题考查了全等三角形的判定和性质,三角形的中线的定义,三角形的三边关系,正确的作出图形是解题的关键5、 (1)证明见解析;(2)【解析】【分析】(1)利用三角形内角和定理求出,再利用折叠和角平分线的性质证明,即可证明;(2)利用三角形内角和定理求出,再利用对顶角相等证明,再利用三角形内角和定理即可求出(1)证明:,,AE平分, 线 封 密 内 号学级年名姓 线 封 密 外 (2)解:,且,【考点】本题考查三角形内角和定理,折叠的性质,角平分线的性质,对顶角相等,(1)的关键是求出,证明;(2)的关键是求出

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2022年解析卷人教版数学八年级上册期中综合复习试题 A卷(解析版).docx
    链接地址:https://www.ketangku.com/wenku/file-712596.html
    相关资源 更多
  • 人教版九年级化学:“有关化学之最”知识归纳练习题(无答案).docx人教版九年级化学:“有关化学之最”知识归纳练习题(无答案).docx
  • 人教版九年级化学:“实验室常见的仪器及使用”质量检测练习题(无答案).docx人教版九年级化学:“实验室常见的仪器及使用”质量检测练习题(无答案).docx
  • 人教版九年级化学:“地壳中元素的分布与含量”能力提升练习题(无答案).docx人教版九年级化学:“地壳中元素的分布与含量”能力提升练习题(无答案).docx
  • 人教版九年级化学:“地壳中元素的分布与含量”知识拓展练习题(无答案).docx人教版九年级化学:“地壳中元素的分布与含量”知识拓展练习题(无答案).docx
  • 人教版九年级化学:“反应类型的判定”能力提升练习题(无答案).docx人教版九年级化学:“反应类型的判定”能力提升练习题(无答案).docx
  • 人教版九年级化学:“反应类型的判定”知识拓展练习题(无答案).docx人教版九年级化学:“反应类型的判定”知识拓展练习题(无答案).docx
  • 人教版九年级化学:“化学相关人物及贡献”质量检测练习题(无答案).docx人教版九年级化学:“化学相关人物及贡献”质量检测练习题(无答案).docx
  • 人教版九年级化学:“化学相关人物及贡献”能力提升检测练习题(无答案).docx人教版九年级化学:“化学相关人物及贡献”能力提升检测练习题(无答案).docx
  • 人教版九年级化学:“化学相关人物及贡献”知识拓展练习题(无答案).docx人教版九年级化学:“化学相关人物及贡献”知识拓展练习题(无答案).docx
  • 人教版九年级化学:“化学相关人物及贡献”知识归纳练习题(无答案).docx人教版九年级化学:“化学相关人物及贡献”知识归纳练习题(无答案).docx
  • 人教版九年级化学:“化学的研究领域和用途”过关练习题(无答案).docx人教版九年级化学:“化学的研究领域和用途”过关练习题(无答案).docx
  • 人教版九年级化学:“化学的研究领域和用途”过关检测题(无答案).docx人教版九年级化学:“化学的研究领域和用途”过关检测题(无答案).docx
  • 人教版九年级化学:“化学的研究领域和用途”练习题(无答案).docx人教版九年级化学:“化学的研究领域和用途”练习题(无答案).docx
  • 人教版九年级化学:“化学的基本知识”应用练习题(无答案).docx人教版九年级化学:“化学的基本知识”应用练习题(无答案).docx
  • 人教版九年级化学:“化学的基本常识”应用达标练习题(无答案).docx人教版九年级化学:“化学的基本常识”应用达标练习题(无答案).docx
  • 人教版九年级化学:“化学性质与物理性质的差别及应用”过关检测练习题(无答案).docx人教版九年级化学:“化学性质与物理性质的差别及应用”过关检测练习题(无答案).docx
  • 人教版九年级化学:“化学性质与物理性质的差别及应用”知识拓展练习题(无答案).docx人教版九年级化学:“化学性质与物理性质的差别及应用”知识拓展练习题(无答案).docx
  • 人教版九年级化学:“化学性质与物理性质的差别及应用”知识归纳练习题(无答案).docx人教版九年级化学:“化学性质与物理性质的差别及应用”知识归纳练习题(无答案).docx
  • 人教版九年级化学:“化学性质与物理性质差别及应用”能力提升练习题(无答案).docx人教版九年级化学:“化学性质与物理性质差别及应用”能力提升练习题(无答案).docx
  • 人教版九年级化学:“几种常见的与化学有关的图标”达标检测练习题(无答案).docx人教版九年级化学:“几种常见的与化学有关的图标”达标检测练习题(无答案).docx
  • 人教版九年级化学:“几种常见的与化学有关的图标”知识拓展练习题(无答案).docx人教版九年级化学:“几种常见的与化学有关的图标”知识拓展练习题(无答案).docx
  • 人教版九年级化学(上)专题化学用语练习题(无答案).docx人教版九年级化学(上)专题化学用语练习题(无答案).docx
  • 人教版九年级化学(上册)说课--氧气的实验室制取与性1.docx人教版九年级化学(上册)说课--氧气的实验室制取与性1.docx
  • 人教版九年级化学(上册)氧气的性质探究实验说课设计.docx人教版九年级化学(上册)氧气的性质探究实验说课设计.docx
  • 人教版九年级化学第四单元课题4《化学式与化合价》.docx人教版九年级化学第四单元课题4《化学式与化合价》.docx
  • 人教版九年级化学第四单元课题3《水的组成》.docx人教版九年级化学第四单元课题3《水的组成》.docx
  • 人教版九年级化学第四单元课题2《水的净化》.docx人教版九年级化学第四单元课题2《水的净化》.docx
  • 人教版九年级化学第四单元课题1《爱护水资源》.docx人教版九年级化学第四单元课题1《爱护水资源》.docx
  • 人教版九年级化学第六单元课题3《二氧化碳和一氧化碳》.docx人教版九年级化学第六单元课题3《二氧化碳和一氧化碳》.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1