28-随机变量及其分布-五年(2018-2022)高考数学真题按知识点分类汇编.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 28 随机变量 及其 分布 2018 2022 高考 数学 真题按 知识点 分类 汇编
- 资源描述:
-
1、五年2018-2022高考数学真题按知识点分类汇编28-随机变量及其分布(含解析)一、单选题1(2022全国统考高考真题)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立已知该棋手与甲、乙、丙比赛获胜的概率分别为,且记该棋手连胜两盘的概率为p,则()Ap与该棋手和甲、乙、丙的比赛次序无关B该棋手在第二盘与甲比赛,p最大C该棋手在第二盘与乙比赛,p最大D该棋手在第二盘与丙比赛,p最大2(2021全国统考高考真题)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示
2、事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A甲与丙相互独立B甲与丁相互独立C乙与丙相互独立D丙与丁相互独立3(2021全国统考高考真题)某物理量的测量结果服从正态分布,下列结论中不正确的是()A越小,该物理量在一次测量中在的概率越大B该物理量在一次测量中大于10的概率为0.5C该物理量在一次测量中小于9.99与大于10.01的概率相等D该物理量在一次测量中落在与落在的概率相等4(2018全国高考真题)某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,则A0.7B0.6C0.4D0.35(20
3、19浙江高考真题)设,则随机变量的分布列是:则当在内增大时A增大B减小C先增大后减小D先减小后增大二、多选题6(2020海南统考高考真题)信息熵是信息论中的一个重要概念.设随机变量X所有可能的取值为,且,定义X的信息熵.()A若n=1,则H(X)=0B若n=2,则H(X)随着的增大而增大C若,则H(X)随着n的增大而增大D若n=2m,随机变量Y所有可能的取值为,且,则H(X)H(Y)三、填空题7(2022全国统考高考真题)已知随机变量X服从正态分布,且,则_8(2020天津统考高考真题)已知甲、乙两球落入盒子的概率分别为和假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_;甲、乙两
4、球至少有一个落入盒子的概率为_9(2019全国高考真题)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束)根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以41获胜的概率是_四、解答题10(2022全国统考高考真题)一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:不够良好良好病例组4060对照组1
5、090(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”与的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R()证明:;()利用该调查数据,给出的估计值,并利用()的结果给出R的估计值附,0.0500.0100.001k3.8416.63510.82811(2022全国统考高考真题)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局三个项目比赛结束后,总得分高的学校获得冠军已知甲学校在三个项目中获胜的概率分别为0
6、.5,0.4,0.8,各项目的比赛结果相互独立(1)求甲学校获得冠军的概率;(2)用X表示乙学校的总得分,求X的分布列与期望12(2022全国统考高考真题)在某地区进行流行病学调查,随机调查了100位某种疾病患者的年龄,得到如下的样本数据的频率分布直方图:(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值为代表);(2)估计该地区一位这种疾病患者的年龄位于区间的概率;(3)已知该地区这种疾病的患病率为,该地区年龄位于区间的人口占该地区总人口的.从该地区中任选一人,若此人的年龄位于区间,求此人患这种疾病的概率(以样本数据中患者的年龄位于各区间的频率作为患者的年龄位于该区间的
7、概率,精确到0.0001).13(2022北京统考高考真题)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到以上(含)的同学将获得优秀奖为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X是甲、乙、丙在校运动会铅球比赛中
8、获得优秀奖的总人数,估计X的数学期望E(X);(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)14(2021全国统考高考真题)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,(1)已知,求;(2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:的一个最小正实根,求证:当时,当时,;(3)根据你的理解说明(2)问结论的实际含义15(2021全国统考高考真题)某学校组织“一带一路”知
9、识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分,已知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记为小明的累计得分,求的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.16(2021北京统考高考真题)在核酸检测中, “k
10、合1” 混采核酸检测是指:先将k个人的样本混合在一起进行1次检测,如果这k个人都没有感染新冠病毒,则检测结果为阴性,得到每人的检测结果都为阴性,检测结束:如果这k个人中有人感染新冠病毒,则检测结果为阳性,此时需对每人再进行1次检测,得到每人的检测结果,检测结束.现对100人进行核酸检测,假设其中只有2人感染新冠病毒,并假设每次检测结果准确.(I)将这100人随机分成10组,每组10人,且对每组都采用“10合1”混采核酸检测.(i)如果感染新冠病毒的2人在同一组,求检测的总次数;(ii)已知感染新冠病毒的2人分在同一组的概率为.设X是检测的总次数,求X的分布列与数学期望E(X).(II)将这10
11、0人随机分成20组,每组5人,且对每组都采用“5合1”混采核酸检测.设Y是检测的总次数,试判断数学期望E(Y)与(I)中E(X)的大小.(结论不要求证明)17(2020全国统考高考真题)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为,(1)求甲连胜四场的概率;(2)求需要进行第五场比赛的概率;(3)求丙最终获胜的概率.1
12、8(2020北京统考高考真题)某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:男生女生支持不支持支持不支持方案一200人400人300人100人方案二350人250人150人250人假设所有学生对活动方案是否支持相互独立()分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;()从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;()将该校学生支持方案二的概率估计值记为,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率
13、估计值记为,试比较与 的大小(结论不要求证明)19(2020江苏统考高考真题)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n次这样的操作,记甲口袋中黑球个数为Xn,恰有2个黑球的概率为pn,恰有1个黑球的概率为qn(1)求p1,q1和p2,q2;(2)求2pn+qn与2pn-1+qn-1的递推关系式和Xn的数学期望E(Xn)(用 n表示) 20(2019全国高考真题)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0
14、.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.21(2019全国高考真题)为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验试验方案如下:每一轮选取两只白鼠对药效进行对比试验对于两只白鼠,随机选一只施以甲药,另一只施以乙药一轮的治疗结果得出后,再安排下一轮试验当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲
15、药得1分,乙药得分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得分;若都治愈或都未治愈则两种药均得0分甲、乙两种药的治愈率分别记为和,一轮试验中甲药的得分记为X(1)求的分布列;(2)若甲药、乙药在试验开始时都赋予4分,表示“甲药的累计得分为时,最终认为甲药比乙药更有效”的概率,则,其中,假设,(i)证明:为等比数列;(ii)求,并根据的值解释这种试验方案的合理性22(2018全国高考真题)某工厂的某种产品成箱包装,每箱件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品检验时,先从这箱产品中任取件作检验,再根据检验结果决定是否对余下的所有产品作检验,
16、设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立(1)记件产品中恰有件不合格品的概率为,求的最大值点;(2)现对一箱产品检验了件,结果恰有件不合格品,以(1)中确定的作为的值已知每件产品的检验费用为元,若有不合格品进入用户手中,则工厂要对每件不合格品支付元的赔偿费用(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?23(2019天津高考真题)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(
17、)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;()设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.24(2018天津高考真题)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽
18、取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.25(2019北京高考真题)改革开放以来,人们的支付方式发生了巨大转变近年来,移动支付已成为主要支付方式之一为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:交付金额(元)支付方式(0,1000(1000,2000大于2000仅使用A18人9人3人仅使用B10人14人1人()从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;()从样本仅使用A和仅使用B的学生中各随
19、机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;()已知上个月样本学生的支付方式在本月没有变化现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由五、双空题26(2022浙江统考高考真题)现有7张卡片,分别写上数字1,2,2,3,4,5,6从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为,则_,_27(2022天津统考高考真题)52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A的概率为_;已知第一次抽到的是A,则第二次抽取A
20、的概率为_28(2021浙江统考高考真题)袋中有4个红球m个黄球,n个绿球.现从中任取两个球,记取出的红球数为,若取出的两个球都是红球的概率为,一红一黄的概率为,则_,_.29(2021天津统考高考真题)甲、乙两人在每次猜谜活动中各猜一个谜语,若一方猜对且另一方猜错,则猜对的一方获胜,否则本次平局,已知每次活动中,甲、乙猜对的概率分别为和,且每次活动中甲、乙猜对与否互不影响,各次活动也互不影响,则一次活动中,甲获胜的概率为_,3次活动中,甲至少获胜2次的概率为_30(2020浙江统考高考真题)盒子里有4个球,其中1个红球,1个绿球,2个黄球,从盒中随机取球,每次取1个,不放回,直到取出红球为止
21、.设此过程中取到黄球的个数为,则_;_参考答案:1D【分析】该棋手连胜两盘,则第二盘为必胜盘.分别求得该棋手在第二盘与甲比赛且连胜两盘的概率;该棋手在第二盘与乙比赛且连胜两盘的概率;该棋手在第二盘与丙比赛且连胜两盘的概率.并对三者进行比较即可解决【详解】该棋手连胜两盘,则第二盘为必胜盘,记该棋手在第二盘与甲比赛,比赛顺序为乙甲丙及丙甲乙的概率均为,则此时连胜两盘的概率为则;记该棋手在第二盘与乙比赛,且连胜两盘的概率为,则记该棋手在第二盘与丙比赛,且连胜两盘的概率为则则即,则该棋手在第二盘与丙比赛,最大.选项D判断正确;选项BC判断错误;与该棋手与甲、乙、丙的比赛次序有关.选项A判断错误.故选:
22、D2B【分析】根据独立事件概率关系逐一判断【详解】 ,故选:B【点睛】判断事件是否独立,先计算对应概率,再判断是否成立3D【分析】由正态分布密度曲线的特征逐项判断即可得解.【详解】对于A,为数据的方差,所以越小,数据在附近越集中,所以测量结果落在内的概率越大,故A正确;对于B,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为,故B正确;对于C,由正态分布密度曲线的对称性可知该物理量一次测量结果大于的概率与小于的概率相等,故C正确;对于D,因为该物理量一次测量结果落在的概率与落在的概率不同,所以一次测量结果落在的概率与落在的概率不同,故D错误.故选:D.4B【详解】分析:判断出为二
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-770571.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
