分享
分享赚钱 收藏 举报 版权申诉 / 8

类型8.3.4 向量数量积与夹角的坐标表示-四基测试题-2021-2022学年高一下学期数学沪教版(2020)必修第二册.docx

  • 上传人:a****
  • 文档编号:777553
  • 上传时间:2025-12-14
  • 格式:DOCX
  • 页数:8
  • 大小:428.40KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    8.3.4 向量数量积与夹角的坐标表示-四基测试题-2021-2022学年高一下学期数学沪教版2020必修第二册 8.3 向量 数量 夹角 坐标 表示 测试 2021 2022 学年 一下 学期 数学
    资源描述:

    1、【学生版】第 8 章平面向量【8.3.4 向量数量积与夹角的坐标表示】【附录】相关考点考点一向量数量积的运算的坐标表示在平面直角坐标系中,设分别是轴,轴上的单位向量;由于向量;分别等价于,根据向量数量积的运算,有,由于为正交单位向量,故,从而;即,其含义是:两个向量的数量积等于它们对应坐标的乘积的和;考点二平面向量夹角的坐标表示已知非零向量,是与的夹角,则;考点三向量垂直与平行的充要条件;给定向量,(1);(2);结论:柯西-施瓦兹不等式证明:一、选择题(每小题6分,共12分)1、已知,则等于( )A10 B10 C3 D32、已知,且,则向量与夹角的大小为( )A B C D二、填充题(每小

    2、题10分,共60分)3、已知平面向量,则= 4、已知向量,;若向量与垂直,则_.5、设向量,且,则_.6、已知(2,1),(0,2)且,则点C的坐标是 7、已知向量,若向量,的夹角为,则实数_.8、已知点A,B,C满足|3,|4,|5,则的值为_三、解答题(第9题12分,第10题16分)9、已知与同向,;(1)求:的坐标;(2)若,求:及;10、已知三个点A(2,1),B(3,2),D(1,4);(1)求证:ABAD;(2)要使四边形ABCD为矩形,求点C的坐标并求矩形ABCD两条对角线所成的锐角的余弦值;【教师版】第 8 章平面向量【8.3.4 向量数量积与夹角的坐标表示】【附录】相关考点考

    3、点一向量数量积的运算的坐标表示在平面直角坐标系中,设分别是轴,轴上的单位向量;由于向量;分别等价于,根据向量数量积的运算,有,由于为正交单位向量,故,从而;即,其含义是:两个向量的数量积等于它们对应坐标的乘积的和;考点二平面向量夹角的坐标表示已知非零向量,是与的夹角,则;考点三向量垂直与平行的充要条件;给定向量,(1);(2);结论:柯西-施瓦兹不等式证明:一、选择题(每小题6分,共12分)1、已知,则等于( )A10 B10 C3 D3【提示】注意:先向量的坐标表示进行线性运算,然后,再向量数量积的坐标运算;【答案】B;【解析】2(4,3),3(1,2),所以(2)(3)4(1)(3)210

    4、;【考点】本题考查了向量的线性运算与数量积运算的坐标表示;进行数量积运算时,要正确使用公式,并能灵活运用以下几个关系:(1)|2.;(2)()()|2|2;(3)()2|22|2;2、已知,且,则向量与夹角的大小为( )A B C D【提示】注意:向量夹角公式的特征;【答案】C;【解析】因为,且,则;又因为,则.所以向量与夹角的大小为;【考点】本题考查平面向量的夹角、垂直问题;解决向量夹角问题的方法及注意事项:(1)求解方法:由直接求出;(2)注意事项:利用三角函数值求的值时,应注意角的取值范围是;利用判断的值时,要注意时,有两种情况:一是是钝角,二是为;时,也有两种情况:一是是锐角,二是为;

    5、二、填充题(每小题10分,共60分)3、已知平面向量,则= 【提示】注意:向量模的定义与求法;【答案】;【解析】因为,所以,;方法1:;方法2:;【考点】本题考查了求向量模的大小;求向量的模的常见思路及方法(1)求模问题一般转化为求模的平方,即,求模时,勿忘记开方;(2)或此性质可用来求向量的模,可以实现实数运算与向量运算的相互转化;4、已知向量,;若向量与垂直,则_.【提示】注意:向量的线性运算与垂直关系的坐标表示;【答案】7;【解析】因为,;所以,又与垂直,所以与,即(m1)(1)320,解得m7.【考点】本题主要考查了向量垂直的充要条件的坐标表示;5、设向量,且,则_.【提示】注意:实数

    6、运算与向量运算;【答案】2;【解析】由,得由,即m20,解得m2;【考点】本题考查了利用实现实数运算与向量运;6、已知(2,1),(0,2)且,则点C的坐标是 【提示】注意:向量平行、垂直的充要条件的坐标表示;【答案】.(2,6);【解析】设C(x,y),则(x2,y1),(x,y2),(2,1),因为,所以,2(x2)0,因为,所以,2xy20,由可得所以,C(2,6).【考点】本题考查了利用向量平行、垂直的充要条件的坐标表示解决问题;7、已知向量,若向量,的夹角为,则实数_.【提示】注意:向量夹角公式的坐标表示;【答案】;【解析】因为,所以|2,|,3m,又,的夹角为,所以cos,即,所以

    7、m,解得m.【考点】本题主要考查了借助向量夹角的坐标表示求参数的值;8、已知点A,B,C满足|3,|4,|5,则的值为_【提示】注意:数形结合明确向量所成的角的大小;【答案】25.;【解析】方法1、(定义法)如图,根据题意可得ABC为直角三角形,且B,cos A,cos C,所以45cos(C)53cos(A)20cos C15cos A201525.方法2:(坐标法)如图,建立平面直角坐标系,则A(3,0),B(0,0),C(0,4)所以(3,0),(0,4),(3,4)所以30040,034(4)16,3(3)(4)09.所以016925.方法3、(转化法)因为|3,|4,|5,所以ABB

    8、C,所以0,所以()|225.答案:25;【考点】本题通过一题多解展示了向量表示的多样性与工具性;三、解答题(第9题12分,第10题16分)9、已知与同向,;(1)求:的坐标;(2)若,求:及;【提示】注意:用好向量的坐标表示;【解析】(1)设(,2)(0),则有410,所以,2,则(2,4);(2)因为12210,10,所以,()0,()10(2,1)(20,10).【考点】本题考查了向量的坐标表示及其运算;平面向量数量积坐标运算的两条途径:进行向量的数量积运算,前提是牢记有关的运算法则和运算性质解题时通常有两条途径:一是先将各向量用坐标表示,直接进行数量积运算;二是先利用数量积的运算律将原

    9、式展开,再依据已知条件计算;10、已知三个点A(2,1),B(3,2),D(1,4);(1)求证:ABAD;(2)要使四边形ABCD为矩形,求点C的坐标并求矩形ABCD两条对角线所成的锐角的余弦值;【提示】注意:在坐标系中数形结合;【解析】(1)证明:因为,A(2,1),B(3,2),D(1,4),所以,(1,1),(3,3).又因为,1(3)130,所以,即ABAD.(2)因为,四边形ABCD为矩形,所以,.设C点坐标为(x,y),则(1,1),(x1,y4),所以,解得所以,C点坐标为(0,5);由于(2,4),(4,2),所以,8816.又|2 ,|2 ,设与的夹角为,则cos 0,所以,矩形ABCD的两条对角线所成的锐角的余弦值为.【考点】本题考查了利用向量的坐标表示解决存在与夹角问题;

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:8.3.4 向量数量积与夹角的坐标表示-四基测试题-2021-2022学年高一下学期数学沪教版(2020)必修第二册.docx
    链接地址:https://www.ketangku.com/wenku/file-777553.html
    相关资源 更多
  • 专题03 导数多选题 (解析版).docx专题03 导数多选题 (解析版).docx
  • 专题03 Unit1-Unit4—八年级英语第一学期期中考试重难点梳理(江苏专用).docx专题03 Unit1-Unit4—八年级英语第一学期期中考试重难点梳理(江苏专用).docx
  • 专题02:经过时间的计算-2023年三年级数学寒假专项提升(人教版).docx专题02:经过时间的计算-2023年三年级数学寒假专项提升(人教版).docx
  • 专题02:小数乘法的口算、笔算以及简便计算-2023-2024学年五年级数学寒假专项提升(人教版).docx专题02:小数乘法的口算、笔算以及简便计算-2023-2024学年五年级数学寒假专项提升(人教版).docx
  • 专题02:大数的近似与改写-2023-2024学年四年级数学寒假专项提升(人教版).docx专题02:大数的近似与改写-2023-2024学年四年级数学寒假专项提升(人教版).docx
  • 专题02:100 以内加减法及应用-2023年二年级数学寒假专项提升(人教版).docx专题02:100 以内加减法及应用-2023年二年级数学寒假专项提升(人教版).docx
  • 专题02高难词汇 .docx专题02高难词汇 .docx
  • 专题02重难题型特训(二)-作图题-2022年物理中考抢分特训.docx专题02重难题型特训(二)-作图题-2022年物理中考抢分特训.docx
  • 专题02站起来、富起来、强起来(练习)(解析版).docx专题02站起来、富起来、强起来(练习)(解析版).docx
  • 专题02电学基础【考点清单 18题型练】九年级物理(人教版)(解析版).docx专题02电学基础【考点清单 18题型练】九年级物理(人教版)(解析版).docx
  • 专题02电学基础【考点清单 18题型练】-2023-2024学年九年级物理上学期期末考点大串讲(人教版)(解析版).docx专题02电学基础【考点清单 18题型练】-2023-2024学年九年级物理上学期期末考点大串讲(人教版)(解析版).docx
  • 专题02构词法-2023年高中英语学业水平考试必备考点归纳与测试(通用版).docx专题02构词法-2023年高中英语学业水平考试必备考点归纳与测试(通用版).docx
  • 专题02完形填空-2011-2022年全国高校体育单招英语真题分类汇编(1).docx专题02完形填空-2011-2022年全国高校体育单招英语真题分类汇编(1).docx
  • 专题02圆锥曲线有关的取值范围与最值问题的解法讲义-2022届高三数学二轮专题复习 WORD版含答案.docx专题02圆锥曲线有关的取值范围与最值问题的解法讲义-2022届高三数学二轮专题复习 WORD版含答案.docx
  • 专题02函数的概念、性质及应用全章复习攻略(16个核心考点)与难点强化训练(解析版).docx专题02函数的概念、性质及应用全章复习攻略(16个核心考点)与难点强化训练(解析版).docx
  • 专题02函数的概念、性质及应用全章复习攻略(16个核心考点)与难点强化训练(原卷版).docx专题02函数的概念、性质及应用全章复习攻略(16个核心考点)与难点强化训练(原卷版).docx
  • 专题02函数A辑(教师版含解析)备战2021年高中数学联赛之1981-2020年高中数学联赛一试试题分专题训练.docx专题02函数A辑(教师版含解析)备战2021年高中数学联赛之1981-2020年高中数学联赛一试试题分专题训练.docx
  • 专题02函数A辑(学生版)备战2021年高中数学联赛之1981-2020年高中数学联赛一试试题分专题训练.docx专题02函数A辑(学生版)备战2021年高中数学联赛之1981-2020年高中数学联赛一试试题分专题训练.docx
  • 专题02二次根式的乘除重难点专练(解析版)-【考点培优尖子生专用】(沪教版).docx专题02二次根式的乘除重难点专练(解析版)-【考点培优尖子生专用】(沪教版).docx
  • 专题02一元二次方程的解法重难点专练(解析版)-【考点培优尖子生专用】(沪教版).docx专题02一元二次方程的解法重难点专练(解析版)-【考点培优尖子生专用】(沪教版).docx
  • 专题02《分数的认识与运算》2020-2021学年小升初数学真题汇编专项复习训练(全国通用).docx专题02《分数的认识与运算》2020-2021学年小升初数学真题汇编专项复习训练(全国通用).docx
  • 专题02 字母-2023-2024学年三年级英语寒假专项提升(外研版三起).docx专题02 字母-2023-2024学年三年级英语寒假专项提升(外研版三起).docx
  • 专题02  词汇-2023-2024学年四年级英语寒假专项提升(外研版三起).docx专题02  词汇-2023-2024学年四年级英语寒假专项提升(外研版三起).docx
  • 专题02  词汇-2023-2024学年六年级英语寒假专项提升(外研版三起).docx专题02  词汇-2023-2024学年六年级英语寒假专项提升(外研版三起).docx
  • 专题02-建议信.docx专题02-建议信.docx
  • 专题02-2021届高考英语阅读理解完型填空600高频单词20练(2).docx专题02-2021届高考英语阅读理解完型填空600高频单词20练(2).docx
  • 专题02-19天晨读 晚练四步轻松掌握高考英语核心词汇词形转换.docx专题02-19天晨读 晚练四步轻松掌握高考英语核心词汇词形转换.docx
  • 专题02 高频语法之形容词、副词与语法填空 (原卷版).docx专题02 高频语法之形容词、副词与语法填空 (原卷版).docx
  • 专题02 高频语法之形容词、副词与语法填空(解析版).docx专题02 高频语法之形容词、副词与语法填空(解析版).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1