分享
分享赚钱 收藏 举报 版权申诉 / 15

类型9.5 三定问题及最值(精练)(学生版).docx

  • 上传人:a****
  • 文档编号:778048
  • 上传时间:2025-12-14
  • 格式:DOCX
  • 页数:15
  • 大小:469.91KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    9.5 三定问题及最值精练学生版 三定 问题 精练 学生
    资源描述:

    1、9.5 三定问题及最值(精练)1(2023北京统考高考真题)已知椭圆的离心率为,A、C分别是E的上、下顶点,B,D分别是的左、右顶点,(1)求的方程;(2)设为第一象限内E上的动点,直线与直线交于点,直线与直线交于点求证:2(2023全国统考高考真题)已知椭圆的离心率是,点在上(1)求的方程;(2)过点的直线交于两点,直线与轴的交点分别为,证明:线段的中点为定点3(2006湖南高考真题)已知,抛物线,且的公共弦过椭圆的右焦点(1)当轴时,求m、p的值,并判断抛物线的焦点是否在直线上;(2)是否存在m、p的值,使抛物线的焦点恰在直线上?若存在,求出符合条件的m、p的值;若不存在,请说明理由4(2

    2、023河南校联考二模)已知椭圆的左、右焦点分别为,左、右顶点分别为,是(为坐标原点)的中点,且.(1)求的方程;(2)不过坐标原点的直线与椭圆相交于两点(异于椭圆的顶点),直线与轴的交点分别为,若,证明:直线过定点,并求该定点的坐标.5(2023陕西商洛镇安中学校考模拟预测)已知圆:,圆:,圆M与圆外切,且与圆内切(1)求圆心M的轨迹C的方程;(2)若A,B,Q是C上的三点,且直线AB不与x轴垂直,O为坐标原点,则当的面积最大时,求的值6(2023湖北武汉统考模拟预测)已知为坐标原点,椭圆的离心率为,椭圆的上顶点到右顶点的距离为(1)求椭圆的方程;(2)若椭圆的左、右顶点分别为、,过点作直线与

    3、椭圆交于、两点,且、位于第一象限,在线段上,直线与直线相交于点,连接、,直线、的斜率分别记为、,求的值7(2023黑龙江大庆统考二模)已知椭圆C:的离心率,短轴长为(1)求椭圆C的方程;(2)已知经过定点的直线l与椭圆相交于A,B两点,且与直线相交于点Q,如果,那么是否为定值?若是,请求出具体数值;若不是,请说明理由8(2023四川绵阳统考二模)已知椭圆C:的焦距为4,左右顶点分别为,椭圆上异于,的任意一点P,都满足直线,的斜率之积为(1)若椭圆上存在两点,关于直线对称,求实数m的取值范围;(2)过右焦点的直线交椭圆于M,N两点,过原点O作直线MN的垂线并延长交椭圆于点Q那么,是否存在实数k,

    4、使得为定值?若存在,请求出k的值;若不存在,请说明理由9(2023云南校联考模拟预测)已知椭圆的左、右顶点分别为、,为椭圆上异于、的动点,设直线、的斜率分别为、,且.(1)求椭圆的标准方程;(2)设动直线与椭圆相交于、两点,为坐标原点,若,的面积是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.10(2023河南统考三模)如图,椭圆的左、右顶点分别为A,B左、右焦点分别为,离心率为,点在椭圆C上(1)求椭圆C的方程;(2)已知P,Q是椭圆C上两动点,记直线AP的斜率为,直线BQ的斜率为,过点B作直线PQ的垂线,垂足为H问:在平面内是否存在定点T,使得为定值,若存在,求出点T的坐标;

    5、若不存在,试说明理由11(2023江苏扬州统考模拟预测)已知椭圆的左顶点为,过右焦点且平行于轴的弦(1)求的内心坐标;(2)是否存在定点,使过点的直线交于,交于点,且满足?若存在,求出该定点坐标,若不存在,请说明理由11(2023广东佛山校考模拟预测)已知为坐标原点,定点,圆,是圆内或圆上一动点,圆与以线段为直径的圆内切.(1)求动点的轨迹方程;(2)设的轨迹为曲线,若直线与曲线相切,过点作直线的垂线,垂足为,证明:为定值.12(2023湖南长沙长沙市实验中学校考三模)已知P为圆C:上一动点,点,线段PN的垂直平分线交线段PC于点Q(1)求点Q的轨迹方程;(2)点M在圆上,且M在第一象限,过点

    6、M作圆的切线交Q点轨迹于A,B两点,问的周长是否为定值?若是,求出定值;若不是,说明理由.13(2023北京密云统考三模)椭圆C:的离心率为,且过点.(1)求椭圆C的方程和长轴长;(2)点M,N在C上,且.证明:直线MN过定点.14(2023山东菏泽山东省鄄城县第一中学校考三模)已知椭圆与直线相交于两点,椭圆上一动点,满足(其中表示两点连线的斜率),且为椭圆的左、右焦点,面积的最大值为(1)求椭圆的标准方程;(2)过点的直线交椭圆于两点,求的内切圆面积的最大值15(2023河北沧州校考模拟预测)已知椭圆过点,点与关于原点对称,椭圆上的点满足直线与直线的斜率之积为.(1)求椭圆的方程;(2)直线

    7、与椭圆相交于两点,已知点,点与关于原点对称,讨论:直线的斜率与直线的斜率之和是否为定值?如果是,求出此定值;如果不是,请说明理由.16(2023山东泰安统考模拟预测)已知曲线上的动点满足,且.(1)求的方程;(2)若直线与交于、两点,过、分别做的切线,两切线交于点.在以下两个条件中选择一个条件,证明另外一个条件成立.直线经过定点;点在定直线上.17(2023安徽六安安徽省舒城中学校考模拟预测)已知点在双曲线上(1)双曲线上动点Q处的切线交的两条渐近线于两点,其中O为坐标原点,求证:的面积是定值;(2)已知点,过点作动直线与双曲线右支交于不同的两点,在线段上取异于点的点,满足,证明:点恒在一条定

    8、直线上18(2023山西阳泉统考二模)已知双曲线经过点,直线、分别是双曲线的渐近线,过分别作和的平行线和,直线交轴于点,直线交轴于点,且(是坐标原点)(1)求双曲线的方程;(2)设、分别是双曲线的左、右顶点,过右焦点的直线交双曲线于、两个不同点,直线与相交于点,证明:点在定直线上.19(2023四川成都校联考二模)已知和是椭圆的左、右顶点,直线与椭圆相交于M,N两点,直线不经过坐标原点,且不与坐标轴平行,直线与直线的斜率之积为(1)求椭圆的标准方程;(2)若直线OM与椭圆的另外一个交点为,直线与直线相交于点,直线PO与直线相交于点,证明:点在一条定直线上,并求出该定直线的方程20(2023江西

    9、鹰潭统考一模)已知双曲线C:(,)的左、右焦点分别为,P为双曲线右支上的一点,为的内心,且.(1)求C的离心率;(2)设点为双曲线C右支上异于其顶点的动点,直线与双曲线左支交于点S.双曲线的右顶点为,直线,分别与圆O:相交,交点分别为异于点D的点M,N,判断直线是否过定点,求出定点,如果不过定点,请说明理由.21(2023全国统考高考真题)已知直线与抛物线交于两点,且(1)求;(2)设F为C的焦点,M,N为C上两点,求面积的最小值22(2023天津统考高考真题)设椭圆的左右顶点分别为,右焦点为,已知(1)求椭圆方程及其离心率;(2)已知点是椭圆上一动点(不与端点重合),直线交轴于点,若三角形的

    10、面积是三角形面积的二倍,求直线的方程23(2023全国统考高考真题)已知双曲线C的中心为坐标原点,左焦点为,离心率为(1)求C的方程;(2)记C的左、右顶点分别为,过点的直线与C的左支交于M,N两点,M在第二象限,直线与交于点P证明:点在定直线上.24(2022天津统考高考真题)椭圆的右焦点为F、右顶点为A,上顶点为B,且满足(1)求椭圆的离心率;(2)直线l与椭圆有唯一公共点M,与y轴相交于N(N异于M)记O为坐标原点,若,且的面积为,求椭圆的标准方程25(2022全国统考高考真题)已知双曲线的右焦点为,渐近线方程为(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面中选取两个作为条件,证明另外一个成立:M在上;注:若选择不同的组合分别解答,则按第一个解答计分.26(2022全国统考高考真题)设抛物线的焦点为F,点,过F的直线交C于M,N两点当直线MD垂直于x轴时,(1)求C的方程;(2)设直线与C的另一个交点分别为A,B,记直线的倾斜角分别为当取得最大值时,求直线AB的方程27(2022全国统考高考真题)已知点在双曲线上,直线l交C于P,Q两点,直线的斜率之和为0(1)求l的斜率;(2)若,求的面积

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:9.5 三定问题及最值(精练)(学生版).docx
    链接地址:https://www.ketangku.com/wenku/file-778048.html
    相关资源 更多
  • 人教版化学选修三重点强化教案.docx人教版化学选修三重点强化教案.docx
  • 人教版化学第六单元碳和碳的氧化物专项练习题(有答案).docx人教版化学第六单元碳和碳的氧化物专项练习题(有答案).docx
  • 人教版化学第三单元课题一分子运动实验专题练习(无答案).docx人教版化学第三单元课题一分子运动实验专题练习(无答案).docx
  • 人教版化学第一单元课题3第1课时 化学药品的取用 学案与练习.docx人教版化学第一单元课题3第1课时 化学药品的取用 学案与练习.docx
  • 人教版化学必修一第二章第一节物质的分类导学案.docx人教版化学必修一第二章第一节物质的分类导学案.docx
  • 人教版化学必修一第二章第一节物质的分类导学案.docx人教版化学必修一第二章第一节物质的分类导学案.docx
  • 人教版化学必修一第一章第一节第一节 化学实验基本方法化学实验安全 过滤和蒸发基础知识强化练习无答案.docx人教版化学必修一第一章第一节第一节 化学实验基本方法化学实验安全 过滤和蒸发基础知识强化练习无答案.docx
  • 人教版化学必修一第一章从实验学化学第二课时学案.docx人教版化学必修一第一章从实验学化学第二课时学案.docx
  • 人教版化学必修一同步检测卷(一)化学实验基本方法测试卷扫描版.docx人教版化学必修一同步检测卷(一)化学实验基本方法测试卷扫描版.docx
  • 人教版化学必修1 第一章 从实验学化学  蒸馏和萃取 导学案.docx人教版化学必修1 第一章 从实验学化学  蒸馏和萃取 导学案.docx
  • 人教版化学化学课题1 分子和原子中考常考练习题专练.docx人教版化学化学课题1 分子和原子中考常考练习题专练.docx
  • 人教版化学初三下第十二单元12.2化学元素与人体健康教案.docx人教版化学初三下第十二单元12.2化学元素与人体健康教案.docx
  • 人教版化学初三下第九单元9.1溶液的形成教案.docx人教版化学初三下第九单元9.1溶液的形成教案.docx
  • 人教版化学初三下册:第9单元 课题3 溶质的质量分数(第3课时)学案.docx人教版化学初三下册:第9单元 课题3 溶质的质量分数(第3课时)学案.docx
  • 人教版化学初三下册:第9单元 课题3 溶质的质量分数(第2课时)学案.docx人教版化学初三下册:第9单元 课题3 溶质的质量分数(第2课时)学案.docx
  • 人教版化学初三下册:第9单元 课题2 溶解度(第2课时)学案.docx人教版化学初三下册:第9单元 课题2 溶解度(第2课时)学案.docx
  • 人教版化学初三下册:第8单元 课题3 金属资源的利用和保护(第2课时)学案.docx人教版化学初三下册:第8单元 课题3 金属资源的利用和保护(第2课时)学案.docx
  • 人教版化学初三下册:第8单元 课题2 金属的化学性质(第2课时)学案.docx人教版化学初三下册:第8单元 课题2 金属的化学性质(第2课时)学案.docx
  • 人教版化学初三下册:第11单元 课题2 化学肥料(第2课时)学案.docx人教版化学初三下册:第11单元 课题2 化学肥料(第2课时)学案.docx
  • 人教版化学初三下册:第11单元 课题1 生活中常见的盐(第3课时)学案.docx人教版化学初三下册:第11单元 课题1 生活中常见的盐(第3课时)学案.docx
  • 人教版化学初三下册:第11单元 课题1 生活中常见的盐(第2课时)学案.docx人教版化学初三下册:第11单元 课题1 生活中常见的盐(第2课时)学案.docx
  • 人教版化学初三下册:第10单元 课题2 酸和碱的中和反应(第2课时)学案.docx人教版化学初三下册:第10单元 课题2 酸和碱的中和反应(第2课时)学案.docx
  • 人教版化学初三下册:第10单元 课题1 常见的酸和碱(第1课时)学案.docx人教版化学初三下册:第10单元 课题1 常见的酸和碱(第1课时)学案.docx
  • 人教版化学初三下册教案:第9单元 课题3第2课时 溶液的综合计算.docx人教版化学初三下册教案:第9单元 课题3第2课时 溶液的综合计算.docx
  • 人教版化学初三下册教案:第9单元 课题3第1课时 溶质的质量分数.docx人教版化学初三下册教案:第9单元 课题3第1课时 溶质的质量分数.docx
  • 人教版化学初三下册教案:第9单元 课题2第2课时 溶解度.docx人教版化学初三下册教案:第9单元 课题2第2课时 溶解度.docx
  • 人教版化学初三下册教案:第9单元 课题2第1课时 饱和溶液与不饱和溶液.docx人教版化学初三下册教案:第9单元 课题2第1课时 饱和溶液与不饱和溶液.docx
  • 人教版化学初三下册教案:第9单元 课题1第2课时 溶解时的热量变化及乳化现象.docx人教版化学初三下册教案:第9单元 课题1第2课时 溶解时的热量变化及乳化现象.docx
  • 人教版化学初三下册教案:第9单元 课题1第1课时 溶液.docx人教版化学初三下册教案:第9单元 课题1第1课时 溶液.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1