《新步步高》2017版高考数学江苏(理)考前三个月配套文档 专题7 解析几何 第28练 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
1 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新步步高 新步步高2017版高考数学江苏理考前三个月配套文档 专题7 解析几何 第28练 WORD版含解析 步步高 2017 高考 数学 江苏 考前 三个月 配套 文档 专题 28 WORD 解析
- 资源描述:
-
1、第28练直线与圆题型分析高考展望直线与圆是解析几何的基础,在高考中,除对本部分知识单独考查外,更多是在与圆锥曲线结合的综合题中对相关知识进行考查单独考查时,一般为填空题,难度不大,属低中档题直线的方程,圆的方程的求法及位置关系的判断与应用是本部分的重点体验高考1(2015广东改编)平行于直线2xy10且与圆x2y25相切的直线的方程是_答案2xy50或2xy50解析设所求直线方程为2xyc0,依题意有,解得c5,所以所求直线方程为2xy50或2xy50.2(2015课标全国改编)过三点A(1,3),B(4,2),C(1,7)的圆交y轴于M、N两点,则MN_.答案4解析由已知,得(3,1),(3
2、,9),则3(3)(1)(9)0,所以,即ABBC,故过三点A,B,C的圆以AC为直径,得其方程为(x1)2(y2)225,令x0得(y2)224,解得y122,y222,所以MN|y1y2|4.3(2015山东改编)一条光线从点(2,3)射出,经y轴反射后与圆(x3)2(y2)21相切,则反射光线所在直线的斜率为_答案或解析由已知,得点(2,3)关于y轴的对称点为(2,3),由入射光线与反射光线的对称性,知反射光线一定过点(2,3)设反射光线所在直线的斜率为k,则反射光线所在直线的方程为y3k(x2),即kxy2k30.由反射光线与圆相切,则有d1,解得k或k.4(2016上海)已知平行直线
3、l1:2xy10,l2:2xy10,则l1,l2的距离为_答案解析d.5(2016课标全国丙)已知直线l:mxy3m0与圆x2y212交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若AB2,则CD_.答案4解析设AB的中点为M,由题意知,圆的半径R2,AB2,所以OM3,解得m,由解得A(3,),B(0,2),则AC的直线方程为y(x3),BD的直线方程为y2x,令y0,解得C(2,0),D(2,0),所以CD4.高考必会题型题型一直线方程的求法与应用例1(1)若点P(1,1)为圆C(x3)2y29的弦MN的中点,则弦MN所在直线的方程为_答案2xy10解析由题意知圆心C(3,0
4、),kCP.由kCPkMN1,得kMN2,所以弦MN所在直线的方程是2xy10.(2)已知ABC的顶点A(3,1),AB边上的中线所在直线方程为6x10y590,B的平分线所在直线方程为x4y100,求BC边所在直线的方程解设B(4y110,y1),由AB中点在6x10y590上,可得:610590,y15,B(10,5)设A点关于x4y100的对称点为A(x,y),则有A(1,7),点A(1,7),B(10,5)在直线BC上,故BC边所在直线的方程是2x9y650.点评(1)两条直线平行与垂直的判定若两条不重合的直线l1,l2的斜率k1,k2存在,则l1l2k1k2,l1l2k1k21;判定
5、两直线平行与垂直的关系时,如果给出的直线方程中存在字母系数,不仅要考虑斜率存在的情况,还要考虑斜率不存在的情况(2)求直线方程的常用方法直接法:直接选用恰当的直线方程的形式,写出结果;待定系数法:先由直线满足的一个条件设出直线方程,使方程中含有一个待定系数,再由题给的另一条件求出待定系数变式训练1(2016广州执信中学高一上学期期末)已知直线l经过直线3x4y20与直线2xy20的交点P,且垂直于直线x2y10.(1)求直线l的方程;(2)求直线l关于原点O对称的直线方程解(1)由解得所以点P的坐标是(2,2),又因为直线x2y10,即yx的斜率为k,由直线l与x2y10垂直可得kl2,故直线
6、l的方程为:y22(x2),即2xy20.(2)直线l的方程2xy20在x轴、y轴上的截距分别是1与2,则直线l关于原点对称的直线在x轴、y轴上的截距分别是1与2,所求直线方程为1,即2xy20.题型二圆的方程例2(1)(2015湖北)如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且AB2.圆C的标准方程为_圆C在点B处的切线在x轴上的截距为_答案(x1)2(y)221解析由题意,设圆心C(1,r)(r为圆C的半径),则r22122,解得r.所以圆C的方程为(x1)2(y)22.方法一令x0,得y1,所以点B(0, 1)又点C(1, ),所以直线BC的斜
7、率为kBC1,所以过点B的切线方程为y(1)x0,即yx(1)令y0,得切线在x轴上的截距为1.方法二令x0,得y1,所以点B(0,1)又点C(1,),设过点B的切线方程为y(1)kx,即kxy(1)0.由题意,得圆心C(1,)到直线kxy(1)0的距离dr,解得k1.故切线方程为xy(1)0.令y0,得切线在x轴上的截距为1.(2)已知圆C经过点A(2,1),并且圆心在直线l1:y2x上,且该圆与直线l2:yx1相切求圆C的方程;求以圆C内一点B为中点的弦所在直线l3的方程解设圆的标准方程为(xa)2(yb)2r2,则解得故圆C的方程为(x1)2(y2)22.由知圆心C的坐标为(1,2),则
8、kCB.设直线l3的斜率为k3,由k3kCB1,可得k32.故直线l3的方程为y2(x2),即4x2y130.点评求圆的方程的两种方法(1)几何法:通过研究圆的性质、直线和圆、圆与圆的位置关系,进而求得圆的基本量和方程(2)代数法:用待定系数法先设出圆的方程,再由条件求得各系数变式训练2已知圆x2y24上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点(1)求线段AP中点的轨迹方程;(2)若PBQ90,求线段PQ中点的轨迹方程解(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x2,2y)因为P点在圆x2y24上,所以(2x2)2(2y)24,故线段AP中点的轨
9、迹方程为(x1)2y21.(2)设PQ的中点为N(x,y),连结BN.在RtPBQ中,PNBN.设O为坐标原点,连结ON,则ONPQ,所以OP2ON2PN2ON2BN2,所以x2y2(x1)2(y1)24.故线段PQ中点的轨迹方程为x2y2xy10.题型三直线与圆的位置关系、弦长问题例3(1)(2015重庆改编)已知直线l:xay10(aR)是圆C:x2y24x2y10的对称轴,过点A(4,a)作圆C的一条切线,切点为B,则AB_.答案6解析根据直线与圆的位置关系求解由于直线xay10是圆C:x2y24x2y10的对称轴,圆心C(2,1)在直线xay10上,2a10,a1,A(4,1)AC23
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-793210.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
