《新步步高》2017版高考数学(理江苏专用)大二轮总复习与增分策略配套练习:专题二 函数与导数 第4讲 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
5 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新步步高 新步步高2017版高考数学理江苏专用大二轮总复习与增分策略配套练习:专题二函数与导数 第4讲 WORD版含解析 步步高 2017 高考 数学 江苏 专用 二轮 复习 策略 配套 练习
- 资源描述:
-
1、第4讲导数的热点问题(2016课标全国乙)已知函数f(x)(x2)exa(x1)2有两个零点.(1)求a的取值范围;(2)设x1,x2是f(x)的两个零点,证明:x1x20,则当x(,1)时,f(x)0,所以f(x)在(,1)上单调递减,在(1,)上单调递增.又f(1)e,f(2)a,取b满足b0且b(b2)a(b1)2a0,故f(x)存在两个零点.设a0,因此f(x)在(1,)上单调递增.又当x1时,f(x)0,所以f(x)不存在两个零点.若a1,故当x(1,ln(2a)时,f(x)0,因此f(x)在(1,ln(2a)上单调递减,在(ln(2a),)上单调递增.又当x1时,f(x)0,所以f
2、(x)不存在两个零点.综上,a的取值范围为(0,).(2)证明不妨设x1x2,由(1)知,x1(,1),x2(1,),2x2(,1),f(x)在(,1)上单调递减,所以x1x2f(2x2),即f(2x2)1时,g(x)1时,g(x)0,从而g(x2)f(2x2)0,故x1x20(0xg(0)0,x(0,1),即当x(0,1)时,f(x)2.(3)解由(2)知,当k2时,f(x)k对x(0,1)恒成立.当k2时,令h(x)f(x)k,则h(x)f(x)k(1x2).所以当0x 时,h(x)0,因此h(x)在区间上单调递减.故当0x 时,h(x)h(0)0,即f(x)2时,f(x)k并非对x(0,
3、1)恒成立.综上可知,k的最大值为2.思维升华用导数证明不等式的方法(1)利用单调性:若f(x)在a,b上是增函数,则xa,b,则f(a)f(x)f(b),对x1,x2a,b,且x1x2,则f(x1)f(x2).对于减函数有类似结论.(2)利用最值:若f(x)在某个范围D内有最大值M(或最小值m),则对xD,则f(x)M(或f(x)m).(3)证明f(x)g(x),可构造函数F(x)f(x)g(x),证明F(x)0).(1)当x0时,求证:f(x)1a;(2)在区间(1,e)上f(x)x恒成立,求实数a的取值范围.(1)证明设(x)f(x)1aaln xa(x0),则(x).令(x)0,则x1
4、,当0x1时,(x)1时,(x)0,所以(x)在(1,)上单调递增,故(x)在x1处取到极小值也是最小值,故(x)(1)0,即f(x)1a.(2)解由f(x)x得aln x1x,即a.令g(x)(1xe),则g(x).令h(x)ln x(1x0,故h(x)在区间(1,e)上单调递增,所以h(x)h(1)0.因为h(x)0,所以g(x)0,即g(x)在区间(1,e)上单调递增,则g(x)g(e)e1,即0),则f(x)(x0),当x(0,e)时,f(x)0,f(x)在(e,)上单调递增,当xe时,f(x)取得极小值f(e)ln e2,f(x)的极小值为2.(2)由题设g(x)f(x)(x0),令
5、g(x)0,得mx3x(x0).设(x)x3x(x0),则(x)x21(x1)(x1),当x(0,1)时,(x)0,(x)在(0,1)上单调递增;当x(1,)时,(x)时,函数g(x)无零点;当m时,函数g(x)有且只有一个零点;当0m时,函数g(x)无零点;当m或m0时,函数g(x)有且只有一个零点;当0m时,函数g(x)有两个零点.思维升华(1)函数yf(x)k的零点问题,可转化为函数yf(x)和直线yk的交点问题.(2)研究函数yf(x)的值域,不仅要看最值,而且要观察随x值的变化y值的变化趋势.跟踪演练2已知函数f(x)2ln xx2ax(aR).(1)当a2时,求f(x)的图象在x1
6、处的切线方程;(2)若函数g(x)f(x)axm在上有两个零点,求实数m的取值范围.解(1)当a2时,f(x)2ln xx22x,f(x)2x2,切点坐标为(1,1),切线的斜率kf(1)2,则切线方程为y12(x1),即2xy10.(2)g(x)2ln xx2m,则g(x)2x.因为x,所以当g(x)0时,x1.当x0;当1xe时,g(x)0.故g(x)在x1处取得极大值g(1)m1.又gm2,g(e)m2e2,g(e)g4e20,则g(e)g,所以g(x)在上的最小值是g(e).g(x)在上有两个零点的条件是解得10,又由h0可得r0,故V(r)在(0,5)上为增函数;当r(5,5)时,V
7、(r)0,故V(r)在(5,5)上为减函数.由此可知,V(r)在r5处取得最大值,此时h8.即当r5,h8时,该蓄水池的体积最大.思维升华利用导数解决生活中的优化问题的一般步骤(1)建模:分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式yf(x).(2)求导:求函数的导数f(x),解方程f(x)0.(3)求最值:比较函数在区间端点和使f(x)0的点的函数值的大小,最大(小)者为最大(小)值.(4)作答:回归实际问题作答.跟踪演练3(2016江苏省苏北三市高三模拟)经市场调查,某商品每吨的价格为x(1x0);月需求量为y2万吨,y2x2x1. 当该商品的需
8、求量大于供给量时,销售量等于供给量;当该商品的需求量不大于供给量时,销售量等于需求量,该商品的月销售额等于月销售量与价格的乘积.(1)若a,问商品的价格为多少时,该商品的月销售额最大?(2)记需求量与供给量相等时的价格为均衡价格,若该商品的均衡价格不低于每吨6百元,求实数a 的取值范围.解(1) 若a,由y2y1,得x2x1x()2.解得40x6.因为1x14,所以1x6.设该商品的月销售额为g(x),则g(x)当1x6时,g(x)(x)xg(6).当6x0,得x0,所以f(x)在区间(1,14)上是增函数,若该商品的均衡价格不低于6百元,即函数f(x)在区间6,14)上有零点,所以即解得00
9、.当2a10,即a时,函数f(x)在(0,1)上单调递减,在(1,)上单调递增;当02a11,即a1,即a0时,函数f(x)在(1,2a1)上单调递减,在(0,1),(2a1,)上单调递增.(3)根据(2)知,当a时,函数f(x)在1,2上单调递减.若x1x2,则不等式|f(x1)f(x2)|对任意正实数恒成立,此时(0,).若x1x2,不妨设1x1f(x2),原不等式即f(x1)f(x2),即f(x1)f(x2)对任意的a,x1,x21,2恒成立,设g(x)f(x),则对任意的a,x1,x21,2,不等式g(x1)g(x2)恒成立,即函数g(x)在1,2上为增函数,故g(x)0对任意的a,x
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-793247.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
