《步步高》2015年高考数学(江苏专用理科)二轮专题复习 专题四 第2讲.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 步步高 步步高2015年高考数学江苏专用,理科二轮专题复习 专题四 第2讲 2015 年高 数学 江苏 专用 理科 二轮 专题 复习
- 资源描述:
-
1、第2讲数列求和及综合应用考情解读高考对本节知识主要以解答题的形式考查以下两个问题:(1)以递推公式或图、表形式给出条件,求通项公式,考查用等差、等比数列知识分析问题和探究创新的能力,属中档题.(2)通过分组、错位相减等转化为等差或等比数列的求和问题,考查等差、等比数列求和公式及转化与化归思想的应用,属中档题.1.数列求和的方法技巧(1)分组转化法有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并.(2)错位相减法这是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列anbn的前n项和,其中an,bn分
2、别是等差数列和等比数列.(3)倒序相加法这是在推导等差数列前n项和公式时所用的方法,也就是将一个数列倒过来排列(反序),当它与原数列相加时若有公式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.(4)裂项相消法利用通项变形,将通项分裂成两项或n项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.这种方法适用于求通项为的数列的前n项和,其中an若为等差数列,则.常见的裂项公式:;();();().2.数列应用题的模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是一个固定的数时,该模
3、型是等比模型,这个固定的数就是公比.(3)混合模型:在一个问题中同时涉及等差数列和等比数列的模型.(4)生长模型:如果某一个量,每一期以一个固定的百分数增加(或减少),同时又以一个固定的具体量增加(或减少)时,我们称该模型为生长模型.如分期付款问题,树木的生长与砍伐问题等.(5)递推模型:如果容易找到该数列任意一项an与它的前一项an1(或前n项)间的递推关系式,我们可以用递推数列的知识来解决问题.热点一分组转化求和例1等比数列an中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.第一列第二列第三列第一行3210第二行6414第三行98
4、18(1)求数列an的通项公式;(2)若数列bn满足:bnan(1)nln an,求数列bn的前n项和Sn.思维启迪(1)根据表中数据逐个推敲确定an的通项公式;(2)分组求和.解(1)当a13时,不合题意;当a12时,当且仅当a26,a318时,符合题意;当a110时,不合题意.因此a12,a26,a318,所以公比q3.故an23n1 (nN*).(2)因为bnan(1)nln an23n1(1)nln(23n1)23n1(1)nln 2(n1)ln 323n1(1)n(ln 2ln 3)(1)nnln 3,所以Sn2(133n1)111(1)n(ln 2ln 3)123(1)nnln 3
5、.当n为偶数时,Sn2ln 33nln 31;当n为奇数时,Sn2(ln 2ln 3)ln 33nln 3ln 21.综上所述,Sn思维升华在处理一般数列求和时,一定要注意使用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和,在求和时要分析清楚哪些项构成等差数列,哪些项构成等比数列,清晰正确地求解.在利用分组求和法求和时,由于数列的各项是正负交替的,所以一般需要对项数n进行讨论,最后再验证是否可以合并为一个公式.已知数列an中,a11,anan1()n(nN*).(1)求证:数列a2n与a2n1(nN*)都是等比数列;(2)若数列an的前2n项和为T2n,令bn(3T2n)n(n1)
6、,求数列bn的最大项.(1)证明因为anan1()n,an1an2()n1,所以.又a11,a2,所以数列a1,a3,a2n1,是以1为首项,为公比的等比数列;数列a2,a4,a2n,是以为首项,为公比的等比数列.(2)解由(1)可得T2n(a1a3a2n1)(a2a4a2n)33()n,所以bn3n(n1)()n,bn13(n1)(n2)()n1,所以bn1bn3(n1)()n(n)3(n1)()n1(2n),所以b1b4bn,所以(bn)maxb2b3.热点二错位相减法求和例2设数列an的前n项和为Sn,已知a11,Sn12Snn1(nN*),(1)求数列an的通项公式;(2)若bn,数列
7、bn的前n项和为Tn,nN*,证明:Tn1时,Sn2Sn1n两式相减得an的递推关系式,然后构造数列求通项;(2)先利用错位相减法求出Tn,再放缩.(1)解Sn12Snn1,当n2时,Sn2Sn1n,an12an1,an112(an1),即2(n2),又S22S12,a1S11,a23,2,当n1时,式也成立,an12n,即an2n1(nN*).(2)证明an2n1,bn,Tn,Tn,两式相减,得Tn2()20,前n项和为Sn,S36,且满足a3a1,2a2,a8成等比数列.(1)求an的通项公式;(2)设bn,求数列bn的前n项和Tn.思维启迪(1)利用方程思想可确定a,d,写出an;(2)
8、利用裂项相消法求Tn.解(1)由S36,得a22.a3a1,2a2,a8成等比数列,(2d)(26d)42,解得d1或d,d0,d1.数列an的通项公式为ann.(2)Tn(1)()()()()().思维升华裂项相消法适合于形如形式的数列,其中an为等差数列.已知等差数列an是递增数列,且满足a4a715,a3a88.(1)求数列an的通项公式;(2)令bn(n2),b1,求数列bn的前n项和Sn.解(1)根据题意a3a88a4a7,a4a715,所以a4,a7是方程x28x150的两根,且a480,当n7时,由于S6570,故Sn570(a7a8an)5707041()n6780210()n
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
