专题07 函数中的双变量问题(原卷版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题07 函数中的双变量问题原卷版 专题 07 函数 中的 变量 问题 原卷版
- 资源描述:
-
1、专题7 函数中的双变量问题一、考情分析函数与导数一直是高考中的热点与难点, 近几年高考试卷及各地模拟试卷中常出现在函数背景下借组导数处理含有两个变量的等式与不等式问题,这类问题由于变量多,不少同学不知如何下手,其实如能以函数思想为指导,把双变量问题转化为一个或两个一元函数问题,再利用导数就可有效地加以解决.二、解题秘籍(一) 与函数单调性有关的双变量问题此类问题一般是给出含有的不等式,若能通过变形,把不等式两边转化为同源函数,可利用函数单调性定义构造单调函数,再利用导数求解.常见结论:(1)若对任意,当时恒有,则在D上是增函数;(2)若对任意,当时恒有,则在D上是增函数;(3)若对任意,当时恒
2、有,则在D上是增函数;(4)若对任意,当时恒有,则在D上是增函数.【例1】(2024届四川省仁寿第一中学校高三上学期第一次调研)已知函数(1)求的单调区间;(2)存在且,使成立,求的取值范围【解析】(1)由题意得,令得,时,在上单调递增;时,在上单调递减;综上,单调递增区间为,单调递减区间为(2)由题意存在且,不妨设,由(1)知时,单调递减等价于,即,即存在且,使成立令,则在上存在减区间即在上有解集,即在上有解,即,;令,时,在上单调递增,时,在单调递减, (二) 与极值点有关的双变量问题与极值点有关的双变量问题,一般是根据是方程的两个根,确定的关系,再通过消元转化为只含有或的关系式,再构造函
3、数解题,有时也可以把所给条件转化为的齐次式,然后转化为关于的函数,此外若题中含有参数也可考虑把所给式子转化为关于参数的表达式.【例2】(2024届福建省福州第一中学高三上学期质量检查)已知函数(1)若,求实数a的取值范围;(2)设,是函数的两个极值点,证明:【解析】(1)当时,在时,单调递减,又,所以,不满足题意;当时,若,即时,在上单调递增,又,所以,满足题意;若,即时,令,可得,当时,单调递增,当时,单调递减,而,所以,不满足在上.综上所述,;(2)当时,由得,单调递减,无极值,不满足题意;当时,若,即时,在上单调递增,无极值,不满足题意;若,即时,令,可得,此时,当时,单调递增,当时,单
4、调递减,当时,单调递增,所以为极大值,为极小值,且,要证,即证,即,即证:,即证:则,因为,故在上为减函数,故,故成立,故.【例3】(2023届云南省曲靖市高三下学期第二次联考)已知函数.(1)当时,试讨论函数的单调性;(2)设函数有两个极值点,证明:.【解析】(1)当时,定义域为,令解得或,且当或时,当时,所以当或时,单调递增,当时,单调递减,综上在区间,上单调递增,在区间单调递减.(2)由已知,可得,函数有两个极值点,即在上有两个不等实根,令,只需,故,又,所以,要证,即证,只需证,令,则,令,则恒成立,所以在上单调递减,又,由零点存在性定理得,使得,即,所以时,单调递增,时,单调递减,则
5、,又由对勾函数知在上单调递增,所以所以,即得证.(三) 与零点有关的双变量问题与函数零点有关的双变量问题,一般是根据是方程的两个根,确定的关系,再通过消元转化为只含有或的关系式,再构造函数解题,有时也可以把所给条件转化为的齐次式,然后转化为关于的函数,有时也可转化为关于的函数,若函数中含有参数,可考虑把参数消去,或转化为以参数为自变量的函数.【例4】已知函数(1)当时,求的单调区间;(2)若函数在定义域内有两个不相等的零点求实数a的取值范围;证明:【解析】 (1)当时,函数,定义域为由,得当时,当时,所以的单调递减区间为,单调递增区间为(2)若函数在定义域内有两个不相等的零点,则方程有两个不等
6、的实根即方程有两个不等的实根记,则,记,则在上单减,且,当时,;当时,在上单调递增,在单调递减又且当时,方程为有两个不等的实根时,当时函数在定义域内有两个不相等的零点要证,只需证,只需证,因为,两式相减得:整理得所以只需证,即证,即,不妨设,令,只需证,只需证,设,只需证当时,即可,在(单调递减,当时,在单调递增,当时,原不等式得证明.(四) 独立双变量,各自构造一元函数此类问题一般是给出两个独立变量,通过变形,构造两个函数,再利用导数知识求解.【例5】(2024届陕西省宝鸡实验高级中学高三一模)已知函数,是自然对数的底数.(1)当时,求整数的值,使得函数在区间上存在零点;(2)若存在使得,试
7、求的取值范围.【解析】(1),当时,故是上的增函数,同理是上的减函数,且时,故当时,函数的零点在内,满足条件同理,当时,函数的零点在内,满足条件,综上(2)问题当时,当时,由,可知;当时,由,可知;当时,在上递减,上递增,时,而,设(仅当时取等号),在上单调递增,而,当时,即时,即,构造,易知,在递增,即的取值范围是 (五) 构造一元函数求解双变量问题当两个以上的变元或是两个量的确定关系在解题过程中反复出现.通过变量的四则运算后,把整体处理为一个变量,从而达到消元的目的.【例6】已知函数(1)求曲线在点处的切线方程;(2)设,讨论函数在上的单调性;(3)证明:对任意的,有【解析】 (1)解:因
8、为,所以,即切点坐标为,又,切线斜率切线方程为:(2)解:因为,所以,令,则, 在上单调递增,在上恒成立,在上单调递增.(3)解:原不等式等价于,令,即证,由(2)知在上单调递增,在上单调递增,又因为,所以命题得证. (六) 独立双变量,把其中一个变量看作常数若问题中两个变量没有明确的数量等式关系,有时可以把其中一个当常数,另外一个当自变量【例7】已知函数,(1)若函数在处的切线也是函数图像的一条切线,求实数a的值;(2)若函数的图像恒在直线的下方,求实数a的取值范围;(3)若,且,证明:【解析】 (1),在处切线斜率,所以切线,又,设与相切时的切点为,则斜率,则切线的方程又可表示为,由,解之
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
