分享
分享赚钱 收藏 举报 版权申诉 / 28

类型专题10 解三角形(教师版).docx

  • 上传人:a****
  • 文档编号:831250
  • 上传时间:2025-12-16
  • 格式:DOCX
  • 页数:28
  • 大小:1.20MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    专题10 解三角形教师版 专题 10 三角形 教师版
    资源描述:

    1、专题10 解三角形1【2022年全国甲卷】沈括的梦溪笔谈是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,AB是以O为圆心,OA为半径的圆弧,C是的AB中点,D在AB上,CDAB“会圆术”给出AB的弧长的近似值s的计算公式:s=AB+CD2OA当OA=2,AOB=60时,s=()A11-332B11-432C9-332D9-432【答案】B【解析】【分析】连接OC,分别求出AB,OC,CD,再根据题中公式即可得出答案.【详解】解:如图,连接OC,因为C是AB的中点,所以OCAB,又CDAB,所以O,C,D三点共线,即OD=OA=OB=2,又AOB=60,所以AB=OA=OB=

    2、2,则OC=3,故CD=2-3,所以s=AB+CD2OA=2+2-322=11-432.故选:B.2【2021年甲卷文科】在中,已知,则()A1BCD3【答案】D【解析】【分析】利用余弦定理得到关于BC长度的方程,解方程即可求得边长.【详解】设,结合余弦定理:可得:,即:,解得:(舍去),故.故选:D.【点睛】利用余弦定理及其推论解三角形的类型:(1)已知三角形的三条边求三个角;(2)已知三角形的两边及其夹角求第三边及两角;(3)已知三角形的两边与其中一边的对角,解三角形3【2021年乙卷理科】魏晋时刘徽撰写的海岛算经是有关测量的数学著作,其中第一题是测海岛的高如图,点,在水平线上,和是两个垂

    3、直于水平面且等高的测量标杆的高度,称为“表高”,称为“表距”,和都称为“表目距”,与的差称为“表目距的差”则海岛的高()A表高B表高C表距D表距【答案】A【解析】【分析】利用平面相似的有关知识以及合分比性质即可解出【详解】如图所示:由平面相似可知,而 ,所以,而 ,即 故选:A.【点睛】本题解题关键是通过相似建立比例式,围绕所求目标进行转化即可解出4【2020年新课标3卷理科】在ABC中,cosC=,AC=4,BC=3,则cosB=()ABCD【答案】A【解析】【分析】根据已知条件结合余弦定理求得,再根据,即可求得答案.【详解】在中,根据余弦定理:可得 ,即由故.故选:A.【点睛】本题主要考查

    4、了余弦定理解三角形,考查了分析能力和计算能力,属于基础题.5【2019年新课标1卷文科】ABC的内角A,B,C的对边分别为a,b,c,已知asinAbsinB=4csinC,cosA=,则=A6B5C4D3【答案】A【解析】【分析】利用余弦定理推论得出a,b,c关系,在结合正弦定理边角互换列出方程,解出结果.【详解】详解:由已知及正弦定理可得,由余弦定理推论可得,故选A【点睛】本题考查正弦定理及余弦定理推论的应用6【2018年新课标2卷理科】在中,,BC=1,AC=5,则AB=ABCD【答案】A【解析】【详解】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.点

    5、睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.7【2018年新课标3卷理科】的内角的对边分别为,若的面积为,则ABCD【答案】C【解析】【详解】分析:利用面积公式和余弦定理进行计算可得详解:由题可知所以由余弦定理所以故选C.点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理8【2022年全国甲卷】已知ABC中,点D在边BC上,ADB=120,AD=2,CD=2BD当ACAB取得最小值时,BD=_【答案】3-1#-1+3【解析】【分析】设CD=2BD=2m0,利用余弦定理表示出AC2AB2后,结合基本不等式

    6、即可得解.【详解】设CD=2BD=2m0,则在ABD中,AB2=BD2+AD2-2BDADcosADB=m2+4+2m,在ACD中,AC2=CD2+AD2-2CDADcosADC=4m2+4-4m,所以AC2AB2=4m2+4-4mm2+4+2m=4(m2+4+2m)-12(1+m)m2+4+2m=4-12(m+1)+3m+14-122(m+1)3m+1=4-23,当且仅当m+1=3m+1即m=3-1时,等号成立,所以当ACAB取最小值时,m=3-1.故答案为:3-1.9【2021年乙卷文科】记的内角A,B,C的对边分别为a,b,c,面积为,则_【答案】【解析】【分析】由三角形面积公式可得,再

    7、结合余弦定理即可得解.【详解】由题意,所以,所以,解得(负值舍去).故答案为:.10【2020年新课标1卷理科】如图,在三棱锥PABC的平面展开图中,AC=1,ABAC,ABAD,CAE=30,则cosFCB=_.【答案】【解析】【分析】在中,利用余弦定理可求得,可得出,利用勾股定理计算出、,可得出,然后在中利用余弦定理可求得的值.【详解】,由勾股定理得,同理得,在中,由余弦定理得,在中,由余弦定理得.故答案为:.【点睛】本题考查利用余弦定理解三角形,考查计算能力,属于中等题.11【2019年新课标2卷理科】的内角的对边分别为.若,则的面积为_.【答案】【解析】【分析】本题首先应用余弦定理,建

    8、立关于的方程,应用的关系、三角形面积公式计算求解,本题属于常见题目,难度不大,注重了基础知识、基本方法、数学式子的变形及运算求解能力的考查【详解】由余弦定理得,所以,即解得(舍去)所以,【点睛】本题涉及正数开平方运算,易错点往往是余弦定理应用有误或是开方导致错误解答此类问题,关键是在明确方法的基础上,准确记忆公式,细心计算12【2019年新课标2卷文科】的内角A,B,C的对边分别为a,b,c.已知bsinA+acosB=0,则B=_.【答案】.【解析】【分析】先根据正弦定理把边化为角,结合角的范围可得.【详解】由正弦定理,得,得,即,故选D【点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑

    9、推理和数学运算素养采取定理法,利用转化与化归思想解题忽视三角形内角的范围致误,三角形内角均在范围内,化边为角,结合三角函数的恒等变化求角13【2018年新课标1卷文科】的内角的对边分别为,已知,则的面积为_【答案】.【解析】【分析】首先利用正弦定理将题中的式子化为,化简求得,利用余弦定理,结合题中的条件,可以得到,可以断定为锐角,从而求得,进一步求得,利用三角形面积公式求得结果.【详解】因为,结合正弦定理可得,可得,因为,结合余弦定理,可得,所以为锐角,且,从而求得,所以的面积为,故答案是.【点睛】本题主要考查余弦定理及正弦定理的应用,属于中档题.对余弦定理一定要熟记两种形式:(1);(2),

    10、同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住、等特殊角的三角函数值,以便在解题中直接应用.14【2022年全国乙卷】记ABC的内角A,B,C的对边分别为a,b,c已知sinCsinA-B=sinBsinC-A(1)若A=2B,求C;(2)证明:2a2=b2+c2【答案】(1)58;(2)证明见解析【解析】【分析】(1)根据题意可得,sinC=sinC-A,再结合三角形内角和定理即可解出; (2)由题意利用两角差的正弦公式展开得sinCsinAcosB-cosAsinB=sinBsinCcosA-cosCsinA,再根据正弦定理,余弦定理化简即可证出(

    11、1)由A=2B,sinCsinA-B=sinBsinC-A可得,sinCsinB=sinBsinC-A,而0B0,而0C,0C-A,显然CC-A,所以,C+C-A=,而A=2B,A+B+C=,所以C=58(2)由sinCsinA-B=sinBsinC-A可得,sinCsinAcosB-cosAsinB=sinBsinCcosA-cosCsinA,再由正弦定理可得,accosB-bccosA=bccosA-abcosC,然后根据余弦定理可知,12a2+c2-b2-12b2+c2-a2=12b2+c2-a2-12a2+b2-c2,化简得:2a2=b2+c2,故原等式成立15【2022年全国乙卷】记

    12、ABC的内角A,B,C的对边分别为a,b,c,已知sinCsin(A-B)=sinBsin(C-A)(1)证明:2a2=b2+c2;(2)若a=5,cosA=2531,求ABC的周长【答案】(1)见解析(2)14【解析】【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc,从而可求得b+c,即可得解.(1)证明:因为sinCsinA-B=sinBsinC-A,所以sinCsinAcosB-sinCsinBcosA=sinBsinCcosA-sinBsinAcosC,所以aca2+c2-b22ac-2bcb2+c2-a

    13、22bc=-aba2+b2-c22ab,即a2+c2-b22-b2+c2-a2=-a2+b2-c22,所以2a2=b2+c2;(2)解:因为a=5,cosA=2531,由(1)得b2+c2=50,由余弦定理可得a2=b2+c2-2bccosA, 则50-5031bc=25,所以bc=312,故b+c2=b2+c2+2bc=50+31=81,所以b+c=9,所以ABC的周长为a+b+c=14.16【2022年新高考1卷】记ABC的内角A,B,C的对边分别为a,b,c,已知cosA1+sinA=sin2B1+cos2B(1)若C=23,求B;(2)求a2+b2c2的最小值【答案】(1)6;(2)4

    14、2-5【解析】【分析】(1)根据二倍角公式以及两角差的余弦公式可将cosA1+sinA=sin2B1+cos2B化成cosA+B=sinB,再结合0B2,即可求出;(2)由(1)知,C=2+B,A=2-2B,再利用正弦定理以及二倍角公式将a2+b2c2化成4cos2B+2cos2B-5,然后利用基本不等式即可解出(1)因为cosA1+sinA=sin2B1+cos2B=2sinBcosB2cos2B=sinBcosB,即sinB=cosAcosB-sinAsinB=cosA+B=-cosC=12,而0B0,所以2C,0B0,又sinB=13,则cosB=1-132=223,ac=1cosB=3

    15、24,则SABC=12acsinB=28;(2)由正弦定理得:bsinB=asinA=csinC,则b2sin2B=asinAcsinC=acsinAsinC=32423=94,则bsinB=32,b=32sinB=12.18【2021年新高考1卷】记是内角,的对边分别为,.已知,点在边上,.(1)证明:;(2)若,求.【答案】(1)证明见解析;(2).【解析】【分析】(1)根据正弦定理的边角关系有,结合已知即可证结论.(2)方法一:两次应用余弦定理,求得边与的关系,然后利用余弦定理即可求得的值.【详解】(1)设的外接圆半径为R,由正弦定理,得,因为,所以,即又因为,所以(2)方法一【最优解】

    16、:两次应用余弦定理因为,如图,在中,在中,由得,整理得又因为,所以,解得或,当时,(舍去)当时,所以方法二:等面积法和三角形相似如图,已知,则,即,而,即,故有,从而由,即,即,即,故,即,又,所以,则方法三:正弦定理、余弦定理相结合由(1)知,再由得在中,由正弦定理得又,所以,化简得在中,由正弦定理知,又由,所以在中,由余弦定理,得故方法四:构造辅助线利用相似的性质如图,作,交于点E,则由,得在中,在中因为,所以,整理得又因为,所以,即或下同解法1方法五:平面向量基本定理因为,所以以向量为基底,有所以,即,又因为,所以由余弦定理得,所以联立,得所以或下同解法1方法六:建系求解以D为坐标原点,

    17、所在直线为x轴,过点D垂直于的直线为y轴,长为单位长度建立直角坐标系,如图所示,则由(1)知,所以点B在以D为圆心,3为半径的圆上运动设,则由知,即联立解得或(舍去),代入式得,由余弦定理得【整体点评】(2)方法一:两次应用余弦定理是一种典型的方法,充分利用了三角形的性质和正余弦定理的性质解题;方法二:等面积法是一种常用的方法,很多数学问题利用等面积法使得问题转化为更为简单的问题,相似是三角形中的常用思路;方法三:正弦定理和余弦定理相结合是解三角形问题的常用思路;方法四:构造辅助线作出相似三角形,结合余弦定理和相似三角形是一种确定边长比例关系的不错选择;方法五:平面向量是解决几何问题的一种重要

    18、方法,充分利用平面向量基本定理和向量的运算法则可以将其与余弦定理充分结合到一起;方法六:建立平面直角坐标系是解析几何的思路,利用此方法数形结合充分挖掘几何性质使得问题更加直观化.19【2021年新高考2卷】在中,角、所对的边长分别为、,.(1)若,求的面积;(2)是否存在正整数,使得为钝角三角形?若存在,求出的值;若不存在,说明理由【答案】(1);(2)存在,且.【解析】【分析】(1)由正弦定理可得出,结合已知条件求出的值,进一步可求得、的值,利用余弦定理以及同角三角函数的基本关系求出,再利用三角形的面积公式可求得结果;(2)分析可知,角为钝角,由结合三角形三边关系可求得整数的值.【详解】(1

    19、)因为,则,则,故,所以,为锐角,则,因此,;(2)显然,若为钝角三角形,则为钝角,由余弦定理可得,解得,则,由三角形三边关系可得,可得,故.20【2020年新课标1卷文科】的内角A,B,C的对边分别为a,b,c.已知B=150.(1)若a=c,b=2,求的面积;(2)若sinA+sinC=,求C.【答案】(1);(2).【解析】【分析】(1)已知角和边,结合关系,由余弦定理建立的方程,求解得出,利用面积公式,即可得出结论;(2)方法一 :将代入已知等式,由两角差的正弦和辅助角公式,化简得出有关角的三角函数值,结合的范围,即可求解.【详解】(1)由余弦定理可得,的面积;(2)方法一:多角换一角

    20、,.方法二:正弦角化边由正弦定理及得故由,得又由余弦定理得,所以,解得所以【整体点评】本题考查余弦定理、三角恒等变换解三角形,熟记公式是解题的关键,考查计算求解能力,属于基础题.其中第二问法一主要考查三角恒等变换解三角形,法二则是通过余弦定理找到三边的关系,进而求角.21【2020年新课标2卷理科】中,sin2Asin2Bsin2C=sinBsinC(1)求A;(2)若BC=3,求周长的最大值.【答案】(1);(2).【解析】【分析】(1)利用正弦定理角化边,配凑出的形式,进而求得;(2)方法一:利用余弦定理可得到,利用基本不等式可求得的最大值,进而得到结果.【详解】(1)由正弦定理可得:,.

    21、(2)方法一【最优解】:余弦+不等式由余弦定理得:,即.(当且仅当时取等号),解得:(当且仅当时取等号),周长,周长的最大值为.方法二:正弦化角(通性通法)设,则,根据正弦定理可知,所以,当且仅当,即时,等号成立此时周长的最大值为方法三:余弦与三角换元结合在中,角A,B,C所对的边分别为a,b,c由余弦定理得,即令,得,易知当时,所以周长的最大值为【整体点评】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;方法一:求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值. 方法二采用正弦定理边化角,利用三角函数的范

    22、围进行求解最值,如果三角形是锐角三角形或有限制条件的,则采用此法解决. 方法三巧妙利用三角换元,实现边化角,进而转化为正弦函数求最值问题.22【2020年新课标2卷文科】ABC的内角A,B,C的对边分别为a,b,c,已知(1)求A;(2)若,证明:ABC是直角三角形【答案】(1);(2)证明见解析【解析】【分析】(1)根据诱导公式和同角三角函数平方关系,可化为,即可解出;(2)根据余弦定理可得,将代入可找到关系,再根据勾股定理或正弦定理即可证出【详解】(1)因为,所以,即,解得,又,所以;(2)因为,所以,即,又, 将代入得,即,而,解得,所以,故,即是直角三角形【点睛】本题主要考查诱导公式和

    23、平方关系的应用,利用勾股定理或正弦定理,余弦定理判断三角形的形状,属于基础题23【2020年新高考1卷(山东卷)】在,这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求的值;若问题中的三角形不存在,说明理由问题:是否存在,它的内角的对边分别为,且,_?注:如果选择多个条件分别解答,按第一个解答计分【答案】详见解析【解析】【分析】方法一:由题意结合所给的条件,利用正弦定理角化边,得到a,b的比例关系,根据比例关系,设出长度长度,由余弦定理得到的长度,根据选择的条件进行分析判断和求解.【详解】方法一【最优解】:余弦定理由可得:,不妨设,则:,即.若选择条件:据此可得:,此时.若选择条

    24、件:据此可得:,则:,此时:,则:.若选择条件:可得,与条件矛盾,则问题中的三角形不存在.方法二:正弦定理由,得由,得,即,得由于,得所以若选择条件:由,得,得解得所以,选条件时问题中的三角形存在,此时若选择条件:由,得,解得,则由,得,得所以,选条件时问题中的三角形存在,此时若选择条件:由于与矛盾,所以,问题中的三角形不存在【整体点评】方法一:根据正弦定理以及余弦定理可得的关系,再根据选择的条件即可解出,是本题的通性通法,也是最优解;方法二:利用内角和定理以及两角差的正弦公式,消去角,可求出角,从而可得,再根据选择条件即可解出24【2019年新课标1卷理科】的内角A,B,C的对边分别为a,b

    25、,c,设(1)求A;(2)若,求sinC【答案】(1);(2).【解析】【分析】(1)利用正弦定理化简已知边角关系式可得:,从而可整理出,根据可求得结果;(2)利用正弦定理可得,利用、两角和差正弦公式可得关于和的方程,结合同角三角函数关系解方程可求得结果.【详解】(1)即:由正弦定理可得:(2),由正弦定理得:又,整理可得:解得:或因为所以,故.(2)法二:,由正弦定理得:又,整理可得:,即由,所以.【点睛】本题考查利用正弦定理、余弦定理解三角形的问题,涉及到两角和差正弦公式、同角三角函数关系的应用,解题关键是能够利用正弦定理对边角关系式进行化简,得到余弦定理的形式或角之间的关系.25【201

    26、9年新课标3卷理科】的内角的对边分别为,已知(1)求;(2)若为锐角三角形,且,求面积的取值范围【答案】(1) ;(2).【解析】【分析】(1)利用正弦定理化简题中等式,得到关于B的三角方程,最后根据A,B,C均为三角形内角解得.(2)根据三角形面积公式,又根据正弦定理和得到关于的函数,由于是锐角三角形,所以利用三个内角都小于来计算的定义域,最后求解的值域.【详解】(1)根据题意,由正弦定理得,因为,故,消去得,因为故或者,而根据题意,故不成立,所以,又因为,代入得,所以.(2)因为是锐角三角形,由(1)知,得到,故,解得.又应用正弦定理,由三角形面积公式有:.又因,故,故.故的取值范围是【点

    27、睛】这道题考查了三角函数的基础知识,和正弦定理或者余弦定理的使用(此题也可以用余弦定理求解),最后考查是锐角三角形这个条件的利用考查的很全面,是一道很好的考题.26【2018年新课标1卷理科】在平面四边形中,.(1)求;(2)若,求.【答案】(1);(2).【解析】【分析】(1)根据正弦定理可以得到,根据题设条件,求得,结合角的范围,利用同角三角函数关系式,求得;(2)根据题设条件以及第一问的结论可以求得,之后在中,用余弦定理得到所满足的关系,从而求得结果.【详解】(1)在中,由正弦定理得.由题设知,所以.由题设知,所以;(2)由题设及(1)知,.在中,由余弦定理得.所以.【点睛】该题考查的是有关解三角形的问题,涉及到的知识点有正弦定理、同角三角函数关系式、诱导公式以及余弦定理,在解题的过程中,需要时刻关注题的条件,以及开方时对于正负号的取舍要从题的条件中寻找角的范围所满足的关系,从而正确求得结果.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:专题10 解三角形(教师版).docx
    链接地址:https://www.ketangku.com/wenku/file-831250.html
    相关资源 更多
  • 人教版高中历史必修二第七单元 第二十一课 二战后苏联经济的改革 同步测试.docx人教版高中历史必修二第七单元 第二十一课 二战后苏联经济的改革 同步测试.docx
  • 人教版高中历史必修二第24课世界经济全球化趋势教学设计.docx人教版高中历史必修二第24课世界经济全球化趋势教学设计.docx
  • 人教版高中历史必修二第18课《罗斯福新政》优质教学设计(7页).docx人教版高中历史必修二第18课《罗斯福新政》优质教学设计(7页).docx
  • 人教版高中历史必修二模拟题精选:第八单元 世界经济的全球化趋势.docx人教版高中历史必修二模拟题精选:第八单元 世界经济的全球化趋势.docx
  • 人教版高中历史必修二 第四单元 中国特色社会主义建设的道路 单元测试.docx人教版高中历史必修二 第四单元 中国特色社会主义建设的道路 单元测试.docx
  • 人教版高中历史必修二 第二单元 资本主义世界的市场的形成和发展 单元测试.docx人教版高中历史必修二 第二单元 资本主义世界的市场的形成和发展 单元测试.docx
  • 人教版高中历史必修二 第七单元 苏联的社会主义建设 单元测试.docx人教版高中历史必修二 第七单元 苏联的社会主义建设 单元测试.docx
  • 人教版高中历史必修三试题:第四单元近代以来世界的科学发展历程.docx人教版高中历史必修三试题:第四单元近代以来世界的科学发展历程.docx
  • 人教版高中历史必修三试题:第五单元近代中国的思想解放潮流.docx人教版高中历史必修三试题:第五单元近代中国的思想解放潮流.docx
  • 人教版高中历史必修三试题:第三单元古代中国的科学技术与文学艺术.docx人教版高中历史必修三试题:第三单元古代中国的科学技术与文学艺术.docx
  • 人教版高中历史必修三试题:8.23美术的辉煌.docx人教版高中历史必修三试题:8.23美术的辉煌.docx
  • 人教版高中历史必修三试题:7.21 现代中国教育的发展.docx人教版高中历史必修三试题:7.21 现代中国教育的发展.docx
  • 人教版高中历史必修三试题:7.20“百花齐放”“百家争鸣”.docx人教版高中历史必修三试题:7.20“百花齐放”“百家争鸣”.docx
  • 人教版高中历史必修三试题:6.18 新时期的理论探索.docx人教版高中历史必修三试题:6.18 新时期的理论探索.docx
  • 人教版高中历史必修三试题:6.16三民主义的形成和发展.docx人教版高中历史必修三试题:6.16三民主义的形成和发展.docx
  • 人教版高中历史必修三试题:4.13从蒸汽机到互联网.docx人教版高中历史必修三试题:4.13从蒸汽机到互联网.docx
  • 人教版高中历史必修三试题:4.12破解生命起源之谜.docx人教版高中历史必修三试题:4.12破解生命起源之谜.docx
  • 人教版高中历史必修三试题:4.11物理学的重大进展.docx人教版高中历史必修三试题:4.11物理学的重大进展.docx
  • 人教版高中历史必修三试题:3.9辉煌灿烂的文学.docx人教版高中历史必修三试题:3.9辉煌灿烂的文学.docx
  • 人教版高中历史必修三试题:2.7启蒙运动.docx人教版高中历史必修三试题:2.7启蒙运动.docx
  • 人教版高中历史必修三试题:1.1“百家争鸣”和儒家思想的形成.docx人教版高中历史必修三试题:1.1“百家争鸣”和儒家思想的形成.docx
  • 人教版高中历史必修三第四单元 第12课 探索生命起源之谜 同步测试.docx人教版高中历史必修三第四单元 第12课 探索生命起源之谜 同步测试.docx
  • 人教版高中历史必修三第四单元 第11课 物理学的重大进展 同步测试.docx人教版高中历史必修三第四单元 第11课 物理学的重大进展 同步测试.docx
  • 人教版高中历史必修三第四单元 《近代以来世界的科学发展历程》单元测试题(解析版).docx人教版高中历史必修三第四单元 《近代以来世界的科学发展历程》单元测试题(解析版).docx
  • 人教版高中历史必修三第六单元 第18课 新时期的理论探索 同步测试.docx人教版高中历史必修三第六单元 第18课 新时期的理论探索 同步测试.docx
  • 人教版高中历史必修三第六单元 第17课 毛泽东思想 同步测试.docx人教版高中历史必修三第六单元 第17课 毛泽东思想 同步测试.docx
  • 人教版高中历史必修三第三单元测评.docx人教版高中历史必修三第三单元测评.docx
  • 人教版高中历史必修三第三单元 第10课 充满魅力的书画和戏曲艺术 同步测试.docx人教版高中历史必修三第三单元 第10课 充满魅力的书画和戏曲艺术 同步测试.docx
  • 人教版高中历史必修三第七单元 第20课 百花齐放、百家争鸣 同步测试.docx人教版高中历史必修三第七单元 第20课 百花齐放、百家争鸣 同步测试.docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1