专题36 切线的条数-2023年高考数学优拔尖核心压轴题(选择、填空题)(新高考地区专用).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题36 切线的条数-2023年高考数学优拔尖核心压轴题选择、填空题新高考地区专用 专题 36 切线 2023 年高 数学 拔尖 核心 压轴 选择 填空 新高 地区 专用
- 资源描述:
-
1、专题36 切线的条数【方法点拨】1.按照过一点求切线方程的一般步骤,设切点、求斜率得切线方程、点代入,将切线的条数问题转化为方程解的个数问题;是否存在切线转化为方程有无解的问题.2.有时也可考虑相切为“临界状态”,利用参数的几何意义确定参数的取值范围.【典型题示例】例1 (2022全国新高考卷15)若曲线有两条过坐标原点的切线,则的取值范围是_【答案】【解析】易知曲线不过原点,故设切点为,则切线的斜率为所以切线方程为又因为切线过原点,所以即又因为切线有两条,故上方程有两不等实根所以,解得,或所以的取值范围是例2 (2022江苏南京一中学情调研模拟检测8)若函数与函数有公切线,则实数的取值范围是
2、( )A. B. C. D. 【答案】B【分析】由于中要求,故考虑当时的公切线所对应的实数的值为临界值,当增大时,抛物线沿直线上移,公切线与相切的切点左移,横坐标减小,故所求大于此时的临界值.【解析】先求当时,曲线的切线方程,曲线的切线在处的切线方程为,即再求当曲线与直线相切时(即直线为公切线)的值设曲线与直线相切时切点为则由导数的几何意义得,解得,切点为将代入得当增大时,抛物线沿直线上移,公切线与相切的切点左移,横坐标减小,即切点的横坐标小于0故所求大于此时的值,即.例3 (2022全国甲卷文20改编)已知函数,曲线在点处的切线也是曲线的切线,则实数a的取值范围是 【答案】【分析一】由于中的
3、几何意义为截距,故只需求出、相切时的值,将图象往上平移,即增大,即为所求.【分析二】设出上的切点坐标,分别由和及切点表示出切线方程,由切线重合表示出,构造函数,求导求出函数值域,即可求得的取值范围.【解析一】设公切点为则,解之得或(不符合题意,舍去)故的取值范围为.【解析二】,则在点处的切线方程为,整理得,设该切线与切于点,则,则切线方程为,整理得,则,整理得,令,则,令,解得或,令,解得或,则变化时,的变化情况如下表:01000则的值域为,故的取值范围为.例4 (2022江苏南通期末16)已知函数,若aR时,直线与曲线相切,且满足条件的k的值有且只有3个,则a的取值范围为_【答案】【分析】利
4、用过点的曲线的切线有3条,构造函数,借助函数有3个零点求解作答.【解析】由求导得:,设直线与曲线相切的切点为,于是得,且,则,显然函数在R上单调递增,因直线与曲线相切的k的值有且只有3个,则有直线与曲线相切的切点横坐标t值有且只有3个,即方程有3个不等实根,令,求导得:,当或时,当时,即函数在,上递增,在上递减,当时,取得极大值,当时,取得极小值,方程有3个不等实根,当且仅当函数有3个不同的零点,因此,解得,所以a的取值范围为.故答案为.例5 若函数的图象与曲线C:存在公共切线,则实数的取值范围为ABCD【答案】A【分析】本道题结合存在公共切线,建立切线方程,结合待定系数法,建立等式,构造新函
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-834925.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
