分享
分享赚钱 收藏 举报 版权申诉 / 31

类型人教版九年级数学上册第二十四章圆章节测试试卷(含答案详解版).docx

  • 上传人:a****
  • 文档编号:869580
  • 上传时间:2025-12-17
  • 格式:DOCX
  • 页数:31
  • 大小:1.16MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    人教版 九年级 数学 上册 第二 十四 章节 测试 试卷 答案 详解
    资源描述:

    1、人教版九年级数学上册第二十四章圆章节测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、往直径为的圆柱形容器内装入一些水以后,截面如图所示,若水面宽,则水的最大深度为()ABCD2、以原点O为圆心的圆交x

    2、轴于A、B两点,交y轴的正半轴于点C,D为第一象限内O上的一点,若DAB25,则OCD()A50B40C70D303、在O中按如下步骤作图:(1)作O的直径AD;(2)以点D为圆心,DO长为半径画弧,交O于B,C两点;(3)连接DB,DC,AB,AC,BC根据以上作图过程及所作图形,下列四个结论中错误的是()AABD90BBADCBDCADBCDAC2CD4、如图,在中,以点为圆心,为半径的圆与所在直线的位置关系是()A相交B相离C相切D无法判断5、已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为()ABCD6、下列语句,错误的是()A直径是弦B相等的圆心角所对的弧相等C弦的垂直平分

    3、线一定经过圆心D平分弧的半径垂直于弧所对的弦7、如图,O是RtABC的外接圆,ACB90,过点C作O的切线,交AB的延长线于点D设A,D,则()AB+90C2+90D+2908、如图,在ABCD中,为的直径,O和相切于点E,和相交于点F,已知,则的长为()ABCD29、如图,是的内接三角形,是直径,则的长为( )A4BCD10、 “圆材埋壁”是我国古代著名数学著作九章算术中的一个问题,“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:如图所示,CD为O的直径,弦ABCD,垂足为E,CE为1寸,AB为10寸,求直径CD的长依题意,CD长为()A寸B

    4、13寸C25寸D26寸第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示的网格由边长为个单位长度的小正方形组成,点、在直角坐标系中的坐标分别为,则内心的坐标为_2、如图,AB是O的弦,点C在过点B的切线上,且OCOA,OC交AB于点P,已知OAB=22,则OCB=_3、某圆的周长是12.56米,那么它的半径是_,面积是_4、如图,在甲,以点为圆心,的长为半径作圆,交于点,交于点,阴影部分的面积为_(结果保留)5、如图,已知是的直径,且,弦,点是弧上的点,连接、,若,则的长为_三、解答题(5小题,每小题10分,共计50分)1、在中,已知O经过点C,且与相切于点D(1

    5、)在图中作出O;(要求:尺规作图,不写作法,保留作图痕迹)(2)若点D是边上的动点,设O与边、分别相交于点E、F,求的最小值2、如图,OC为O的半径,弦ABOC于点D,OC10,CD4,求AB的长3、已知,正方形ABCD中,M、N分别为AD边上的两点,连接BM、CN并延长交于一点H,连接AH,E为BM上一点,连接AE、CE,ECHMNH90(1)如图1,若E为BM的中点,且DM3AM,求线段AB的长(2)如图2,若点F为BE中点,点G为CF延长线上一点,且EG/BC,CEGE,求证:(3)如图3,在(1)的条件下,点P为线段AD上一动点,连接BP,作CQBP于Q,将BCQ沿BC翻折得到BCl,

    6、点K、R分别为线段BC、Bl上两点,且BI3RI,BC4BK,连接CR、IK交于点T,连接BT,直接写出BCT面积的最大值4、如图,在RtABC中,C90,BD平分ABC,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E(1)求证:AC是O的切线;(2)若OB2,CD,求图中阴影部分的面积(结果保留)5、如图,四边形ABCD是平行四边形,点A,B,D均在圆上请仅用无刻度的直尺分别下列要求画图(1)在图中,若AB是直径,CD与圆相切,画出圆心;(2)在图中,若CB,CD均与圆相切,画出圆心-参考答案-一、单选题1、C【解析】【分析】过点O作ODAB于D,交O于E,连接OA,根据垂

    7、径定理即可求得AD的长,又由O的直径为,求得OA的长,然后根据勾股定理,即可求得OD的长,进而求得油的最大深度的长【详解】解:过点O作ODAB于D,交O于E,连接OA,由垂径定理得:,O的直径为,在中,由勾股定理得:,油的最大深度为,故选:【考点】本题主要考查了垂径定理的知识此题难度不大,解题的关键是注意辅助线的作法,构造直角三角形,利用勾股定理解决2、C【解析】【分析】根据圆周角定理求出DOB,根据等腰三角形性质求出OCD=ODC,根据三角形内角和定理求出即可【详解】解:连接OD,DAB=25,BOD=2DAB=50,COD=90-50=40,OC=OD,OCD=ODC=(180-COD)=

    8、70,故选:C【考点】本题考查了圆周角定理,等腰三角形性质,三角形内角和定理的应用,主要考查学生的推理能力,题目比较典型,难度适中3、D【解析】【分析】根据作图过程可知:AD是O的直径,根据垂径定理即可判断A、B、C正确,再根据DCOD,可得AD2CD,进而可判断D选项【详解】解:根据作图过程可知:AD是O的直径,ABD90,A选项正确;BDCD,,BADCBD,B选项正确;根据垂径定理,得ADBC,C选项正确;DCOD,AD2CD,D选项错误故选:D【考点】本题考查作图-复杂作图、含30度角的直角三角形、垂径定理、圆周角定理,解决本题的关键是熟练掌握相关知识点4、A【解析】【分析】过点C作C

    9、DAB于点D,由题意易得AB=5,然后可得,进而根据直线与圆的位置关系可求解【详解】解:过点C作CDAB于点D,如图所示:,根据等积法可得,以点为圆心,为半径的圆,该圆的半径为,圆与AB所在的直线的位置关系为相交,故选A【考点】本题主要考查直线与圆的位置关系,熟练掌握直线与圆的位置关系是解题的关键5、C【解析】【分析】先依据题意画出图形,如图(见解析),过点A作于D,利用勾股定理可求出AD的长,再根据三角形内切圆的性质、三角形的面积公式即可得出答案【详解】解:如图,内切圆O的半径为,切点为,则过点A作于D,设,则由勾股定理得:则,即解得,即又即解得则内切圆的半径为故选:C【考点】本题考查了三角

    10、形内切圆的性质、勾股定理等知识点,读懂题意,正确画出图形,并求出AD的长是解题关键6、B【解析】【分析】将每一句话进行分析和处理即可得出本题答案.【详解】A.直径是弦,正确.B.在同圆或等圆中,相等的圆心角所对的弧相等,相等的圆心角所对的弧相等,错误.C.弦的垂直平分线一定经过圆心,正确.D.平分弧的半径垂直于弧所对的弦,正确.故答案选:B.【考点】本题考查了圆中弦、圆心角、弧度之间的关系,熟练掌握该知识点是本题解题的关键.7、C【解析】【分析】连接OC, 由BOC是AOC的外角,可得BOC2A2,由CD是O的切线,可求OCD90,可得D902即可【详解】连接OC,如图,O是RtABC的外接圆

    11、,ACB90,AB是直径,A,OA=OC,BOC是AOC的外角,A=ACO,BOC=A+ACO2A2,CD是O的切线,OCCD,OCD90,D90BOC902,2+90故选:C【考点】本题考查圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质,掌握圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质8、C【解析】【分析】首先求出圆心角EOF的度数,再根据弧长公式,即可解决问题【详解】解:如图连接OE、OF,CD是O的切线,OECD,OED=90,四边形ABCD是平行四边形,C=60,A=C=60,D=120,OA=OF,A=OFA=60,DFO=120,EOF=360

    12、-D-DFO-DEO=30,的长故选:C【考点】本题考查切线的性质、平行四边形的性质、弧长公式等知识,解题的关键是求出圆心角的度数,记住弧长公式9、B【解析】【分析】连接BO,根据圆周角定理可得,再由圆内接三角形的性质可得OB垂直平分AC,再根据正弦的定义求解即可【详解】如图,连接OB,是的内接三角形,OB垂直平分AC,又,,又AD=8,AO=4,解得:,故答案选B【考点】本题主要考查了圆的垂径定理的应用,根据圆周角定理求角度是解题的关键10、D【解析】【分析】连结AO,根据垂径定理可得:,然后设O半径为R,则OER1再由勾股定理,即可求解【详解】解:连结AO, CD为直径,CDAB, 设O半

    13、径为R,则OER1RtAOE中,OA2AE2+OE2, R252+(R-1)2,R13,CD2R26(寸)故选:D【考点】本题主要考查了垂径定理,勾股定理,熟练掌握垂径定理是解题的关键二、填空题1、(2,3)【解析】【分析】根据A、B、C三点的坐标建立如图所示的坐标系,计算出ABC各边的长度,易得该三角形是直角三角形,设BC的关系式为:y=kx+b,求出BC与x轴的交点G的坐标,证出点A与点G关于BD对称,射线BD是ABC的平分线,三角形的内心在BD上,设点M为三角形的内心,内切圆的半径为r,在BD上找一点M,过点M作MEAB,过点M作MFAC,且ME=MF=r,求出r的值,在BEM中,利用勾

    14、股定理求出BM的值,即可得到点M的坐标【详解】解:根据A、B、C三点的坐标建立如图所示的坐标系,根据题意可得:AB=,AC=,BC=,BAC=90,设BC的关系式为:y=kx+b,代入B,C,可得,解得:,BC:,当y=0时,x=3,即G(3,0),点A与点G关于BD对称,射线BD是ABC的平分线,设点M为三角形的内心,内切圆的半径为r,在BD上找一点M,过点M作MEAB,过点M作MFAC,且ME=MF=r,BAC=90,四边形MEAF为正方形,SABC=,解得:,即AE=EM=,BE=,BM=,B(-3,3),M(2,3),故答案为:(2,3)【考点】本题考查三角形内心、平面直角坐标系、一次

    15、函数的解析式、勾股定理和正方形的判定与性质等相关知识点,把握内心是三角形内接圆的圆心这个概念,灵活运用各种知识求解即可2、44【解析】【分析】首先连接OB,由点C在过点B的切线上,且OCOA,根据等角的余角相等,易证得CBP=CPB,利用等腰三角形的性质解答即可【详解】连接OB,BC是O的切线,OBBC,OBA+CBP=90,OCOA,A+APO=90,OA=OB,OAB=22,OAB=OBA=22,APO=CBP=68,APO=CPB,CPB=ABP=68,OCB=180-68-68=44,故答案为44【考点】此题考查了切线的性质此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程

    16、思想的应用3、 2米 12.56平方米【解析】【分析】根据周长公式转化为,将C=12.56代入进行计算得到半径,继续利用面积公式,代入半径的值求出面积的结果【详解】因为C=2r,所以=2,所以r=2(米),因为S=r2 =3.1422=12.56(平方米)故答案为:2米12.56平方米【考点】考查圆的面积和周长与半径之间的关系,学生必须熟练掌握圆的面积和周长的求解公式,选择相应的公式进行计算,利用公式是解题的关键4、【解析】【分析】连接BE,根据正切的定义求出A,根据扇形面积公式、三角形的面积公式计算即可【详解】解:连接BE, 在RtABC中,ABC90,tanA,A60,BABE,ABE为等

    17、边三角形,ABE30,EBC30,阴影部分的面积22故答案为【考点】本题考查的是扇形面积计算、等边三角形的判定和性质,掌握扇形面积公式是解题的关键5、9【解析】【分析】连接OC和OE,由同弧所对的圆周角等于圆心角的一半求出COB=60,再在COH中求出CH,最后由垂径定理求出CD【详解】解:连接OC和OE,如下图所示:由同弧所对的圆周角等于圆心角的一半可知,A=EOB,D=COE,A+D=30,EOB+COE=COB=30,COB=60,CDAB,COH为30,60,90的三角形,其三边之比为,CH=,CD=2CH=9,故答案为:9【考点】本题考查了圆周角定理及垂径定理等相关知识点,本题的关键

    18、是求出COB=60三、解答题1、 (1)见详解(2)【解析】【分析】(1)连接CD,用尺规作图,作线段CD的垂直平分线,找到线段CD的中点O,然后以O为圆心,为半径主要作圆即为所作圆(2)过点C作,根据点到直线的距离,垂线段最短可知,点CD为圆的直径时,此时圆的直径最短,根据面积法可得出因为EF也为圆的直径,所以可得出EF最最小值为(1)如图所示,为所作圆(2)如图,作于点D,当CD为过的圆心点O时,此时圆的直径最短EF为的直径,此时EF的长为故EF的最小值为:【考点】本题主要考查了尺规作图,勾股定理,三角形面积求斜边上的高,垂线段最短等知识点的应用,熟练掌握点到直线的距离垂线段最短这性质定理

    19、是解此题的关键2、16【解析】【分析】连接OA,根据垂径定理可得AB=2AD,再由勾股定理,可得AD=8,即可求解【详解】解:如图,连接OA,OC为O的半径,弦ABOC,AB=2AD,OC10,CD4,OA=OC=10,OD=OC-CD=6,在中,由勾股定理得: ,AB=16【考点】本题主要考查了垂径定理,勾股定理,熟练掌握垂直弦的直径平分这条弦,并且平分线所对的两条弧是解题的关键3、 (1)4(2)证明见解析(3)【解析】【分析】(1)由正方形ABCD的性质,可得到ABM为直角三角形,再由E为BM中点,得到BM=2AE,最后由勾股定理求得AB的长度;(2)过点A作AYBH于点Y,由EGBC,

    20、CEGE,F为BE中点,可得GEFCBF,从而得到BCE为等腰三角形,再根据角的关系,易得ECGECH=BCD=45,得到HFC为等腰直角三角形,再根据ABYBCF,得到BM=CF,AY=BF,从而转化得到结论;(3)当P、D重合时得到最大面积,以B为原点建立直角坐标系,求出坐标和表达式,联立方程组求解,即可得出答案(1)解:四边形ABCD为正方形,且DM3AM,BAM=90,AD=AB=4AM,ABM为直角三角形,E为BM的中点,BM=2AE=,在RtABM中,设AM=x,则AB=4x,解得,AB=4;(2)过点A作AYBH于点Y,EG/BC,CEGE,G=BCG=ECG,F为BE的中点,G

    21、EFCBF(AAS),GE=BC,BCE为等腰三角形,CFBE,CFE=90;ECHMNH90,MNH=CND,CNDNCD=90,ECH=NCD,ECGECH=BCD=45,HFC为等腰直角三角形,CF=HF;ABECBE=90,CBEBCF=90,ABE=BCF,AB=BC,AYB=BFC=90,ABYBCF(AAS),BY=CF,AY=BF,BY=HFBY-FY=HF-FYBF=HY=AY,AHY是等腰直角三角形,,;(3)BQC=90,点Q在以BC为直径的半圆弧上运动,当P点与D点重合时,此时Q点离BC最远,QBC和IBC面积最大,此时BCT面积最大;CQBP,CBQ为等腰直角三角形,

    22、由翻折可得,CBI为等腰直角三角形,建立如图直角坐标系,作RSBC,TVBC,由(1)中结论可知:B(0,0),C(4,0),I(2,),BI3RI,BC4BK,解得RS=,R,K(1,0),直线KI解析式为:,直线CR解析式为:,联立,解得,即T,【考点】本题属于四边形综合题,考查正方形的性质、全等三角形证明、翻折问题、等腰三角形的性质等,熟练掌握每个性质的核心内容,理清相互之间的联系,属于压轴题4、(1)见解析;(2)【解析】【分析】(1)欲证明AC是O的切线,只要证明ODAC即可(2)证明OBE是等边三角形即可解决问题【详解】(1)证明:连接OD,如图,BD为ABC平分线,12,OBOD

    23、,13,23,ODBC,C90,ODA90,ODAC,AC是O的切线(2)过O作OGBC,连接OE,则四边形ODCG为矩形,GCODOB2,OGCD,在RtOBG中,利用勾股定理得:BG1,BE2,则OBE是等边三角形,阴影部分面积为2【考点】本题考查切线的判定和性质,等边三角形的判定和性质,思想的面积公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型5、(1)见解析;(2)见解析【解析】【分析】(1)延长CB交圆于一点,把这点与点D连接,与AB交点即为圆心;(2)连接AC、BD交于点G,AC交圆于点E,射线DE交BC于F,射线FG交DA于H,连接BH交AC于O即可【详解】(1)如图1所示,延长CB交圆于点E,连接DE,与AB交点即为圆心; 由已知可得A+DBA=90,EBA=C=A,故EBA +DBA=90,DE为直径;(2)如图2所示,连接AC、BD交于点G,AC交圆于点E,射线DE交BC于F,射线FG交DA于H,连接BH交AC于O点即为所求说明:由已知可得,ADB为等边三角形,由作图可知,AE为直径,DFBC,可得,F是BC中点,进而得出H是AD中点,BHAD,BH过圆心;【考点】本题考查了无刻度直尺作图,解题关键是准确理解题意,根据圆的有关性质进行作图

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:人教版九年级数学上册第二十四章圆章节测试试卷(含答案详解版).docx
    链接地址:https://www.ketangku.com/wenku/file-869580.html
    相关资源 更多
  • 人教版二年级数学上册期末模拟试卷带答案(满分必刷).docx人教版二年级数学上册期末模拟试卷带答案(满分必刷).docx
  • 人教版二年级数学上册期末模拟试卷带答案(培优b卷).docx人教版二年级数学上册期末模拟试卷带答案(培优b卷).docx
  • 人教版二年级数学上册期末模拟试卷带答案(a卷).docx人教版二年级数学上册期末模拟试卷带答案(a卷).docx
  • 人教版二年级数学上册期末模拟试卷带答案解析.docx人教版二年级数学上册期末模拟试卷带答案解析.docx
  • 人教版二年级数学上册期末模拟试卷带答案下载.docx人教版二年级数学上册期末模拟试卷带答案下载.docx
  • 人教版二年级数学上册期末模拟试卷带答案.docx人教版二年级数学上册期末模拟试卷带答案.docx
  • 人教版二年级数学上册期末模拟试卷完美版.docx人教版二年级数学上册期末模拟试卷完美版.docx
  • 人教版二年级数学上册期末模拟试卷完整版.docx人教版二年级数学上册期末模拟试卷完整版.docx
  • 人教版二年级数学上册期末模拟试卷完整.docx人教版二年级数学上册期末模拟试卷完整.docx
  • 人教版二年级数学上册期末模拟试卷学生专用.docx人教版二年级数学上册期末模拟试卷学生专用.docx
  • 人教版二年级数学上册期末模拟试卷含解析答案.docx人教版二年级数学上册期末模拟试卷含解析答案.docx
  • 人教版二年级数学上册期末模拟试卷含精品答案.docx人教版二年级数学上册期末模拟试卷含精品答案.docx
  • 人教版二年级数学上册期末模拟试卷含答案(黄金题型).docx人教版二年级数学上册期末模拟试卷含答案(黄金题型).docx
  • 人教版二年级数学上册期末模拟试卷含答案(预热题).docx人教版二年级数学上册期末模拟试卷含答案(预热题).docx
  • 人教版二年级数学上册期末模拟试卷含答案(达标题).docx人教版二年级数学上册期末模拟试卷含答案(达标题).docx
  • 人教版二年级数学上册期末模拟试卷含答案(轻巧夺冠).docx人教版二年级数学上册期末模拟试卷含答案(轻巧夺冠).docx
  • 人教版二年级数学上册期末模拟试卷含答案(能力提升).docx人教版二年级数学上册期末模拟试卷含答案(能力提升).docx
  • 人教版二年级数学上册期末模拟试卷含答案(综合题).docx人教版二年级数学上册期末模拟试卷含答案(综合题).docx
  • 人教版二年级数学上册期末模拟试卷含答案(综合卷).docx人教版二年级数学上册期末模拟试卷含答案(综合卷).docx
  • 人教版二年级数学上册期末模拟试卷含答案(精练).docx人教版二年级数学上册期末模拟试卷含答案(精练).docx
  • 人教版二年级数学上册期末模拟试卷含答案(突破训练).docx人教版二年级数学上册期末模拟试卷含答案(突破训练).docx
  • 人教版二年级数学上册期末模拟试卷含答案(研优卷).docx人教版二年级数学上册期末模拟试卷含答案(研优卷).docx
  • 人教版二年级数学上册期末模拟试卷含答案(满分必刷).docx人教版二年级数学上册期末模拟试卷含答案(满分必刷).docx
  • 人教版二年级数学上册期末模拟试卷含答案(模拟题).docx人教版二年级数学上册期末模拟试卷含答案(模拟题).docx
  • 人教版二年级数学上册期末模拟试卷含答案(最新).docx人教版二年级数学上册期末模拟试卷含答案(最新).docx
  • 人教版二年级数学上册期末模拟试卷含答案(新).docx人教版二年级数学上册期末模拟试卷含答案(新).docx
  • 人教版二年级数学上册期末模拟试卷含答案(巩固).docx人教版二年级数学上册期末模拟试卷含答案(巩固).docx
  • 人教版二年级数学上册期末模拟试卷含答案(完整版).docx人教版二年级数学上册期末模拟试卷含答案(完整版).docx
  • 人教版二年级数学上册期末模拟试卷含答案(夺分金卷).docx人教版二年级数学上册期末模拟试卷含答案(夺分金卷).docx
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1