人教版数学九年级上册 课程讲义第二十一章:21.1 一元二次方程-解析版.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版数学九年级上册 课程讲义第二十一章:21.1 一元二次方程-解析版 人教版 数学 九年级 上册 课程 讲义 第二十一 21.1 一元 二次方程 解析
- 资源描述:
-
1、 初识一元二次方程知识定位讲解用时:3分钟A、适用范围:人教版初三,基础一般B、知识点概述:本讲义主要用于人教版初三新课,本节课我们主要学习一元二次方程,熟悉一元二次方程的一般形式,掌握一元二次方程的解的概念和相关运算,本节课的重点和是一元二次方程概念的理解,难点是一元二次方程一般形式的判断,通过本节课的学习对一元二次方程有个整体的认识,为后面的解方程打下基础。知识梳理讲解用时:20分钟一元二次方程的定义(1)定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程。(2)概念解析:一元二次方程必须同时满足三个条件:整式方程,即等号两边都是整式,方程中如果有分母,那么分母中无未
2、知数;只含有一个未知数;未知数的最高次数是2一元二次方程的一般形式(1)一般地,任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a0),这种形式叫一元二次方程的一般形式;其中ax2叫做二次项,a叫做二次项系数,bx叫做一次项;c叫做常数项,一次项系数b和常数项c可取任意实数,二次项系数a是不等于0的实数,这是因为当a=0时,方程中就没有二次项了,所以,此方程就不是一元二次方程了。(2)要确定二次项系数,一次项系数和常数项,必须先把一元二次方程化成一般形式。一元二次方程的解(1)一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,
3、又因为只含有一个未知数的方程的解也叫做这个方程的根,所以一元二次方程的解也称为一元二次方程的根;(2)一元二次方程一定有两个解,但不一定有两个实数解,当x1,x2是一元二次方程ax 2+bx+c=0(a0)的两实数根,则下列两等式成立,并可利用这两个等式求解未知量:ax12+bx1+c=0(a0),ax22+bx2+c=0(a0)课堂精讲精练【例题1】方程2x26x5=0的二次项系数、一次项系数、常数项分别为()。A6、2、5 B2、6、5 C2、6、5 D2、6、5【答案】C【解析】本题考查了一元二次方程的一般形式,方程2x26x5=0的二次项系数、一次项系数、常数项分别为2、6、5,故选:
4、C。讲解用时:2分钟解题思路:一元二次方程ax2+bx+c=0(a,b,c是常数且a0)的a、b、c分别是二次项系数、一次项系数、常数项。教学建议:熟记一元二次方程定义。难度:3 适应场景:当堂例题 例题来源:红桥区模拟 年份:2019【练习1】把一元二次方程(1x)(2x)=3x2化成一般形式ax2+bx+c=0(a0)其中a、b、c分别为()。A2、3、1 B2、3、1 C2、3、1 D2、3、1 【答案】B【解析】本题考查了一元二次方程的一般形式,原方程可整理为:2x23x1=0,a=2,b=3,c=1,故选:B。讲解用时:2分钟解题思路:首先将已知方程进行整理,化为一元二次方程的一般形
5、式,再来确定a、b、c的值。教学建议:首先将已知方程进行整理成一般形式,再来确定a、b、c的值。难度:3 适应场景:当堂练习 例题来源:宁波期中 年份:2019【例题2】下列方程中是一元二次方程的是()。Axy+2=1 B Cx2=0 Dax2+bx+c=0【答案】C 【解析】本题考查了一元二次方程的定义,A、是二元二次方程,故本选项错误;B、是分式方程,不是整式方程,故本选项错误;C、是一元二次方程,故本选项正确;D、当a 、b 、c是常数,a0时,方程才是一元二次方程,故本选项错误,故选:C。讲解用时:3分钟解题思路:根据一元二次方程的定义:含有一个未知数,并且所含未知数的项的次数是2次得
6、整式方程,即可判断答案。教学建议:熟记一元二次方程的一般形式即可,注意D选项的正误。难度:3 适应场景:当堂例题 例题来源:绥化模拟 年份:2019【练习2】 下列方程是一元二次方程的是()。Aax2+bx+c=0B3x22x=3(x22)Cx32x4=0D(x1)2+1=0【答案】D 【解析】本题考查了一元二次方程的定义,A、当a=0时,该方程不是一元二次方程,故本选项错误;B、由原方程得到2x6=0,未知数的最高次数是1,不是一元二次方程,故本选项错误;C、未知数最高次数是3,该方程不是一元二次方程,故本选项错误;D、符合一元二次方程的定义,故本选项正确,故选:D。讲解用时:3分钟解题思路
7、:一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数,由这四个条件对四个选项进行验证,满足这四个条件者为正确答案。教学建议:熟记一元二次方程的一般形式即可。难度:3 适应场景:当堂练习 例题来源:潮南区期末 年份:2019【例题3】 关于x的方程(a1)x|a|+13x+2=0是一元二次方程,则()。Aa1 Ba=1 Ca=1 Da=1【答案】C【解析】本题考查一元二次方程的定义,由题意可知: a=1,故选:C。讲解用时:5分钟解题思路:根据一元一次方程的定义列出关于a的等式求解即可。教学建议:熟练运用一元二次方程的定义。难
8、度:3 适应场景:当堂例题 例题来源:中江县模拟 年份:2019【练习3】 已知关于x的方程是一元二次方程,则m的值为()。A1 B1 C1 D不能确定【答案】A 【解析】此题主要考查了一元二次方程的定义,关于x的方程是一元二次方程,m+10,m2+1=2,解得:m=1,故选:A。讲解用时:5分钟解题思路:直接利用一元二次方程的定义得出关于m的等式,进而得出答案。教学建议:熟练运用一元二次方程的定义。难度: 3 适应场景:当堂练习 例题来源:杭州期中 年份:2019【例题4】 若关于x的一元二次方程ax2bx+4=0的解是x=2,则2020+2a-b的值是 。【答案】2019【解析】本题考查了
9、一元二次方程的解定义,关于x的一元二次方程ax2bx+4=0的解是x=2,4a2b+4=0,则2ab=2,2020+2ab=2020+(2ab)=2020+(2)=2019。讲解用时:3分钟解题思路:把x=2代入已知方程求得2ab的值,然后将其整体代入所求的代数式并求值即可。教学建议:先代入,再整理。难度: 3 适应场景:当堂例题 例题来源:河北模拟 年份:2019【练习4】 已知m是方程x2x2=0的一个根,则代数式m2m+3= 。【答案】5 【解析】本题考查了一元二次方程的解定义,把x=m代入方程x2x2=0可得:m2m2=0,即m2m=2,m2m+3=2+3=5。讲解用时:3分钟解题思路
10、:一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值;即用这个数代替未知数所得式子仍然成立;将m代入原方程即可求m2m+1的值。教学建议:先代入,再整理。难度:3 适应场景:当堂练习 例题来源:潮南区期末 年份:2019秋【例题5】若方程ax2+bx+c=0(a0)中,a,b,c满足a+b+c=0和ab+c=0,则方程的根是 。【答案】1【解析】本题就是考查了方程的解的定义,在这个式子中,如果把x=1代入方程,左边就变成a+b+c,又由已知a+b+c=0可知:当x=1时,方程的左右两边相等,即方程必有一根是1,同理可以判断方程必有一根是1,则方程的根是1,1。讲解用时
11、:3分钟解题思路:本题根据一元二次方程的根的定义求解。教学建议:本题根据一元二次方程的根的定义求解。难度: 3 适应场景:当堂例题 例题来源:龙口市期中 年份:2019【练习5】若x=1是关于x的一元二次方程ax2+bx+c=0(a0)的一个根,则2019(a+b+c)= 。【答案】0【解析】本题考查了一元二次方程的解,把x=1代入ax2+bx+c=0(a0)得a+b+c=0,所以2019(a+b+c)=20190=0。讲解用时:3分钟解题思路:先根据一元二次方程的解的定义把x=1代入方程得到a+b+c=0,然后利用整体代入的方法计算2019(a+b+c)的值。教学建议:本题根据一元二次方程的
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
