全国通用2022版高考数学大二轮总复习增分策略专题四数列推理与证明第1讲等差数列与等比数列试题.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 通用 2022 高考 数学 二轮 复习 策略 专题 数列 推理 证明 等差数列 等比数列 试题
- 资源描述:
-
1、第1讲等差数列与等比数列1(2022课标全国)已知an是公差为1的等差数列,Sn为an的前n项和,若S84S4,则a10等于()A. B. C10 D122(2022安徽)已知数列an是递增的等比数列,a1a49,a2a38,则数列an的前n项和等于_3(2022广东)若等比数列an的各项均为正数,且a10a11a9a122e5,则ln a1ln a2ln a20_.4(2022江西)某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n(nN*)等于_1.等差、等比数列基本量和性质的考查是高考热点,经常以小题形式出现.2.数列求和及数列与函数、
2、不等式的综合问题是高考考查的重点,考查分析问题、解决问题的综合能力.热点一等差数列、等比数列的运算(1)通项公式等差数列:ana1(n1)d;等比数列:ana1qn1.(2)求和公式等差数列:Snna1d;等比数列:Sn(q1)(3)性质若mnpq,在等差数列中amanapaq;在等比数列中amanapaq.例1(1)设等差数列an的前n项和为Sn.若a111,a4a66,则当Sn取最小值时,n_.(2)已知等比数列an公比为q,其前n项和为Sn,若S3,S9,S6成等差数列,则q3等于()A B1C或1 D1或思维升华在进行等差(比)数列项与和的运算时,若条件和结论间的联系不明显,则均可化成
3、关于a1和d(q)的方程组求解,但要注意消元法及整体计算,以减少计算量跟踪演练1(1)(2022浙江)已知an是等差数列,公差d不为零若a2,a3,a7成等比数列,且2a1a21,则a1_,d_.(2)已知数列an是各项均为正数的等比数列,a1a21,a3a42,则log2_.热点二等差数列、等比数列的判定与证明数列an是等差数列或等比数列的证明方法(1)证明数列an是等差数列的两种基本方法:利用定义,证明an1an(nN*)为一常数;利用中项性质,即证明2anan1an1(n2)(2)证明an是等比数列的两种基本方法:利用定义,证明(nN*)为一常数;利用等比中项,即证明aan1an1(n2
4、)例2(2022大纲全国)数列an满足a11,a22,an22an1an2.(1)设bnan1an,证明:bn是等差数列;(2)求an的通项公式思维升华(1)判断一个数列是等差(比)数列,也可以利用通项公式及前n项和公式,但不能作为证明方法(2)q和aan1an1(n2)都是数列an为等比数列的必要不充分条件,判断时还要看各项是否为零跟踪演练2(1)(2022大庆铁人中学月考)已知数列an的首项a11,且满足an1,则an_.(2)已知数列an中,a11,an12an3,则an_.热点三等差数列、等比数列的综合问题解决等差数列、等比数列的综合问题,要从两个数列的特征入手,理清它们的关系;数列与
5、不等式、函数、方程的交汇问题,可以结合数列的单调性、最值求解例3已知等差数列an的公差为1,且a2a7a126.(1)求数列an的通项公式an与前n项和Sn;(2)将数列an的前4项抽去其中一项后,剩下三项按原来顺序恰为等比数列bn的前3项,记bn的前n项和为Tn,若存在mN*,使对任意nN*,总有Sn0,a3a100,a6a70的最大自然数n的值为()A6 B7C12 D132已知各项不为0的等差数列an满足a42a3a80,数列bn是等比数列,且b7a7,则b2b12等于()A1 B2C4 D83已知各项都为正数的等比数列an满足a7a62a5,存在两项am,an使得 4a1,则的最小值为
6、()A. B.C. D.4已知等比数列an中,a4a610,则a1a72a3a7a3a9_.提醒:完成作业专题四第1讲二轮专题强化练专题四第1讲等差数列与等比数列A组专题通关1已知等差数列an中,a510,则a2a4a5a9的值等于()A52 B40C26 D202已知等差数列an中,a7a916,S11,则a12的值是()A15 B30C31 D643(2022浙江)已知an是等差数列,公差d不为零,前n项和是Sn,若a3,a4,a8成等比数列,则()Aa1d0,dS40 Ba1d0,dS40Ca1d0,dS40 Da1d0,dS404设Sn为等差数列an的前n项和,(n1)SnnSn1(n
7、N*)若1,则()ASn的最大值是S8 BSn的最小值是S8CSn的最大值是S7 DSn的最小值是S75数列an的首项为3,bn为等差数列且bnan1an(nN*),若b32,b1012,则a8等于()A0 B3 C8 D116若数列n(n4)()n中的最大项是第k项,则k_.7(2022课标全国)设Sn是数列an的前n项和,且a11,an1SnSn1,则Sn_.8已知数列an的首项为a12,且an1(a1a2an) (nN*),记Sn为数列an的前n项和,则Sn_,an_.9成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列bn中的b3、b4、b5.(1)求数列
8、bn的通项公式;(2)数列bn的前n项和为Sn,求证:数列Sn是等比数列10(2022广东)设数列an的前n项和为Sn,nN*.已知a11,a2,a3,且当n2时,4Sn25Sn8Sn1Sn1.(1)求a4的值;(2)证明:为等比数列;(3)求数列an的通项公式B组能力提高11已知an是等差数列,Sn为其前n项和,若S21S4 000,O为坐标原点,点P(1,an),Q(2 011,a2 011),则等于()A2 011 B2 011 C0 D112(2022福建)若a,b是函数f(x)x2pxq(p0,q0)的两个不同的零点,且a,b,2这三个数可适当排序后成等差数列,也可适当排序后成等比数
9、列,则pq的值等于()A6 B7 C8 D913数列an的前n项和为Sn,已知a1,且对任意正整数m,n,都有amnaman,若Snt恒成立,则实数t的最小值为_14已知Sn是等比数列an的前n项和,S4,S2,S3成等差数列,且a2a3a418.(1)求数列an的通项公式;(2)是否存在正整数n,使得Sn2 013?若存在,求出符合条件的所有n的集合;若不存在,说明理由学生用书答案精析专题四数列、推理与证明第1讲等差数列与等比数列高考真题体验1B公差为1,S88a118a128,S44a16.S84S4,8a1284(4a16),解得a1,a10a19d9.故选B.22n1解析由等比数列性质
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-913044.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
五年级下语文课件-回顾拓展三_人教新课标.ppt
