基础强化人教版九年级数学上册第二十二章二次函数专题测评练习题(含答案详解).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基础 强化 人教版 九年级 数学 上册 第二十二 二次 函数 专题 测评 练习题 答案 详解
- 资源描述:
-
1、人教版九年级数学上册第二十二章二次函数专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知在同一直角坐标系中,二次函数和反比例函数的图象如图所示,则一次函数的图象可能是()ABCD2、把抛物线的图
2、象向左平移1个单位,再向上平移2个单位,所得的抛物线的函数关系式是()ABCD3、如图所示,将一根长m的铁丝首尾相接围成矩形,则矩形的面积与其一边满足的函数关系是()A正比例函数关系B一次函数关系C二次函数关系D反比例函数关系4、关于抛物线:,下列说法正确的是()A它的开口方向向上B它的顶点坐标是C当时,y随x的增大而增大D对称轴是直线5、若函数y(a1)x2+2x+a21是二次函数,则()Aa1Ba1Ca1Da16、如图,抛物线交轴于点,交轴于点若点坐标为,对称轴为直线,则下列结论错误的是()A二次函数的最大值为BCD7、二次函数yax2+bx+c的部分图象如图所示,由图象可知该抛物线与x轴
3、的交点坐标是()A(1,0)和(5,0)B(1,0)和(5,0)C(0,1)和(0,5)D(0,1)和(0,5)8、对于函数的图象,下列说法不正确的是()A开口向下B对称轴是直线C最大值为D与轴不相交9、在平面直角坐标系中,将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛物线对应的函数表达式为()ABCD10、二次函数的图象如下左图,则一次函数与反比例函数在同一坐标系内的图象大致为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若某二次函数图象的形状与抛物线y3x2相同,且顶点坐标为(0,2),则它的表达式为_2、在平面直角坐标系中,已知
4、和是抛物线上的两点,将抛物线的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为_3、各种盛水容器可以制作精致的家用流水景观(如图1)科学原理:如图2,始终盛满水的圆柱体水桶水面离地面的高度为,如果在离水面竖直距离为h(单位:)的地方开大小合适的小孔,那么从小孔射出水的射程s(单位:)与h的关系式为,则射程s最大值是_(射程是指水流落地点离小孔的水平距离)4、如图是某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于,两点,拱桥最高点到的距离为,为拱桥底部的两点,且,若的长为,则点到直线的距离为_5、如图,ABC90,AC6,以AB为边长向外作等边ABM,连C
5、M,则CM的最大值为 _三、解答题(5小题,每小题10分,共计50分)1、如图,抛物线交x轴于,两点,交y轴于点,点Q为线段BC上的动点(1)求抛物线的解析式;(2)求的最小值;(3)过点Q作交抛物线的第四象限部分于点P,连接PA,PB,记与的面积分别为,设,求点P坐标,使得S最大,并求此最大值2、如图,抛物线ya(x2)2+3(a为常数且a0)与y轴交于点A(0,)(1)求该抛物线的解析式;(2)若直线ykx(k0)与抛物线有两个交点,交点的横坐标分别为x1,x2,当x12+x2210时,求k的值;(3)当4xm时,y有最大值,求m的值3、如图,已知二次函数与轴交于、两点(点位于点的左侧),
6、与轴交于点,已知的面积是6(1)求的值;(2)在抛物线上是否存在一点,使存在请求出坐标,若不存在请说明理由4、已知关于的二次函数(1)求证:不论为何实数,该二次函数的图象与轴总有两个公共点;(2)若,两点在该二次函数的图象上,直接写出与的大小关系;(3)若将抛物线沿轴翻折得到新抛物线,当时,新抛物线对应的函数有最小值3,求的值5、如图,在直角坐标系中,二次函数的图象与x轴相交于点和点,与y轴交于点C(1)求的值;(2)点为抛物线上的动点,过P作x轴的垂线交直线于点Q当时,求当P点到直线的距离最大时m的值;是否存在m,使得以点为顶点的四边形是菱形,若不存在,请说明理由;若存在,请求出m的值-参考
7、答案-一、单选题1、B【解析】【分析】根据反比例函数图象和二次函数图象位置可得出:a0,b0,c0,由此可得出,一次函数图象与y轴的交点在y轴的负半轴,对照四个选项即可解答【详解】由二次函数图象开口向下可知:a0,对称轴,由反比例函数图象分别在第一、三象限知:c0,一次函数的图象经过二,三,四象限,与y轴的交点在y轴的负半轴,对照四个选项,只有B选项符合一次函数的图象特征,故选:B【考点】本题考查反比例函数的图象、二次函数的图象、一次函数的图象,熟练掌握函数图象与系数之间的关系是解答的关键2、A【解析】【分析】求出原抛物线的顶点坐标,再根据向左平移横坐标减,向上平移纵坐标加求出平移后的抛物线的
8、顶点坐标,然后利用顶点式解析式写出即可【详解】解:抛物线的顶点坐标为(2,1),向左平移1个单位,再向上平移2个单位后的顶点坐标是(1,3)所得抛物线解析式是故选:A【考点】本题考查了二次函数图象的平移,利用顶点的变化确定抛物线解析式的变化更简便3、C【解析】【分析】设矩形的一边长为xm,求出矩形面积即可判断【详解】设矩形的一边长为xm,另一边长为(1-x)m,面积用y表示,故选择:C【考点】本题考查列函数关系式,并判断函数的类型,掌握列函数的方法和函数的特征是解题关键4、C【解析】【分析】根据题目中的抛物线和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题【详解】A选项:,
9、抛物线的开口向下,故A错误;B选项:抛物线的顶点坐标是,故B错误;C选项:对抛物线,当时,y随x增大而增大,故C正确;D选项:抛物线的对称轴是直线,故D错误故选:C【考点】本题考查二次函数的性质,解题的关键是明确题意,利用二次函数的性质解答5、A【解析】【分析】利用二次函数定义进行解答即可【详解】解:由题意得:a10,解得:a1,故选:A【考点】本题主要考查了二次函数的定义,准确计算是解题的关键6、D【解析】【分析】根据抛物线的开口方向、对称轴、顶点坐标、与x轴、y轴的交点以及过特殊点时相应的系数a、b、c满足的关系进行综合判断即可【详解】解:抛物线yax2bxc过点A(4,0),对称轴为直线
10、x1,因此有:x1,即2ab0,因此选项D符合题意;当x1时,yabc的值最大,选项A不符合题意;由抛物线的对称性可知,抛物线与x轴的另一个交点为(2,0),当x1时,yabc0,因此选项B不符合题意;抛物线与x轴有两个不同交点,因此b24ac0,故选项C不符合题意;故选:D【考点】本题考查二次函数的图象和性质,掌握抛物线的位置与系数a、b、c的关系是正确判断的前提7、A【解析】【分析】首先根据图像得出抛物线的对称轴和其中一个交点坐标,然后根据二次函数的对称性即可求得另一个交点坐标【详解】解:由图像可得,抛物线的对称轴为,与x轴的一个交点坐标为(5,0),抛物线与x轴的两个交点关于对称轴对称,
11、抛物线与x轴的另一个交点坐标为(1,0),故选:A【考点】此题考查了二次函数与x轴的交点,二次函数的对称性,解题的关键是根据二次函数的对称性求出与x轴的另一个交点坐标8、D【解析】【分析】根据二次函数的性质,进行判断,即可得到答案.【详解】解:,则开口向下,故A正确;对称轴是直线,故B正确;当,y有最大值k,故C正确;当,与y轴肯定有交点,故D错误;故选择:D.【考点】本题考查了二次函数的性质,解题的关键是熟记二次函数的性质.9、B【解析】【分析】先求出平移后抛物线的顶点坐标,进而即可得到答案【详解】解:的顶点坐标为(0,0)将二次函数的图像向左平移2个单位长度,再向上平移1个单位长度,所得抛
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-958306.html


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
