新教材2021-2022学年高中人教B版数学选择性必修第二册学案:第3章 3-1-1 第2课时 基本计数原理的应用 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
3 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新教材2021-2022学年高中人教B版数学选择性必修第二册学案:第3章 3-1-1 第2课时基本计数原理的应用 WORD
- 资源描述:
-
1、高考资源网() 您身边的高考专家第2课时基本计数原理的应用学 习 任 务核 心 素 养1熟练应用两个计数原理(重点)2能运用两个计数原理解决一些综合性的问题(难点)1借助两个计数原理解题,提升数学运算的素养2通过合理分类或分步解决问题,提升逻辑推理的素养 类型1组数问题【例1】(对接教材P6例2)用0,1,2,3,4,5可以组成多少个无重复数字的:(1)银行存折的四位密码?(2)四位整数?(3)比2 000大的四位偶数?思路点拨(1)用分步乘法计数原理求解(1)问;(2)0不能作首位,优先排首位,用分步乘法计数原理求解;(3)可以按末位是0,2,4分三类,也可以按千位是2,3,4,5分四类解决
2、,也可以用间接法求解解(1)分步解决第一步:选取左边第一个位置上的数字,有6种选取方法;第二步:选取左边第二个位置上的数字,有5种选取方法;第三步:选取左边第三个位置上的数字,有4种选取方法;第四步:选取左边第四个位置上的数字,有3种选取方法由分步乘法计数原理知,可组成不同的四位密码共有6543360(个)(2)分步解决第一步:万位数字有5种选取方法;第二步:百位数字有5种选取方法;第三步:十位数字有4种选取方法;第四步:个位数字有3种选取方法由分步乘法计数原理知,可组成四位整数有5543300(个)(3)法一:按末位是0,2,4分为三类:第一类:末位是0的有44348个;第二类:末位是2的有
3、34336个;第三类:末位是4的有34336个则由分类加法计数原理有N483636120(个)法二:按千位是2,3,4,5分四类:第一类:千位是2的有24324(个);第二类:千位是3的有34336(个);第三类:千位是4的有24324(个);第四类:千位是5的有34336(个)则由分类加法计数原理有N24362436120(个)法三:用0,1,2,3,4,5可以组成的无重复数字的四位偶数分两类:第一类:末位是0的有54360(个);第二类:末位是2或4的有244396(个)共有6096156(个)其中比2 000小的有:千位是1的共有34336(个),所以符合条件的四位偶数共有1563612
4、0(个)1对于组数问题,一般按特殊位置(一般是末位和首位)由谁占领分类,分类中再按特殊位置(或者特殊元素)优先的方法分步完成;如果正面分类较多,可采用间接法从反面求解2解决组数问题,应特别注意其限制条件,有些条件是隐藏的,要善于挖掘排数时,要注意特殊元素、特殊位置优先的原则1四张卡片上分别标有数字“2”“0”“1”“1”,则由这四张卡片可组成不同的四位数的个数为()A6 B9 C12 D24B法一:(列举法)根据0的位置分类:第一类:0在个位有:2 110,1 210,1 120,共3个第二类:0在十位有:2 101,1 201,1 102,共3个第三类:0在百位有:2 011,1 021,1
5、 012,共3个故共有3339个不同的四位数,故选B法二:(树形图法)如图,可知这样的数共有9个,故选B 类型2抽取(分配)问题【例2】(1)高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有()A16种 B18种C37种 D48种(2)甲、乙、丙、丁四人各写一张贺卡,放在一起,再各取一张不是自己的贺卡,则不同取法的种数有_种思路点拨(1)由于去甲工厂的班级分配情况较多,而其对立面较少,可考虑间接法求解(2)先让一人去抽,再让被抽到贺卡所写人去抽(1)C(2)9(1)高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践有43
6、种不同的分配方案,若三个班都不去工厂甲则有33种不同的分配方案则满足条件的不同的分配方案有433337(种)故选C(2)不妨由甲先来取,共3种取法,而甲取到谁的将由谁在甲取后第二个来取,共3种取法,余下来的人,都只有1种选择,所以不同取法共有33119(种)求解抽取(分配)问题的方法1当涉及对象数目不大时,一般选用列举法、树状图法、框图法或者图表法2当涉及对象数目很大时,一般有两种方法:直接法:直接使用分类加法计数原理或分步乘法计数原理间接法:去掉限制条件,计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可23个不同的小球放入5个不同的盒子,每个盒子至多放一个小球,共有多少种方法?解
7、法一:(以小球为研究对象)分三步来完成:第一步:放第一个小球有5种选择;第二步:放第二个小球有4种选择;第三步:放第三个小球有3种选择根据分步乘法计数原理得:共有方法数N54360(种)法二:(以盒子为研究对象)盒子标上序号1,2,3,4,5,分成以下10类:第一类:空盒子标号为(1,2):选法有3216(种);第二类:空盒子标号为(1,3):选法有3216(种);第三类:空盒子标号为(1,4):选法有3216(种);分类还有以下几种情况:空盒子标号分别为(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10类,每一类都有6种方法根据分类加法计数原理得,共有
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-254610.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
