2023届高考数学二轮复习 专题29 圆锥曲线求定值七种类型大题100题(学生版).docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
6 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023届高考数学二轮复习 专题29 圆锥曲线求定值七种类型大题100题学生版 2023 高考 数学 二轮 复习 专题 29 圆锥曲线 求定值七 种类 型大题 100 学生
- 资源描述:
-
1、专题29 圆锥曲线求定值七种类型大题100题类型一:斜率的和与积为定值1-22题1已知椭圆经过点M(2,1),离心率为过点M作倾斜角互补的两条直线分别与椭圆C交于异于M的另外两点P、Q(1)求椭圆C的方程;(2)试判断直线PQ的斜率是否为定值,证明你的结论2已知点是椭圆上的一点,椭圆的离心率与双曲线的离心率互为倒数,斜率为直线交椭圆于,两点,且,三点互不重合.(1)求椭圆的方程;(2)若,分别为直线,的斜率,求证:为定值.3已知椭圆:()的左右焦点分别为,焦距为2,且经过点.直线过右焦点且不平行于坐标轴,与椭圆有两个不同的交点,线段的中点为.(1)点在椭圆上,求的取值范围;(2)证明:直线的斜
2、率与直线的斜率的乘积为定值;4已知椭圆C的中心在原点,焦点在x轴上,离心率为,短轴长为(1)求椭圆C的标准方程(2)直线与椭圆C交于P、Q两点,A,B是椭圆C上位于直线PQ两侧的动点,且直线AB的斜率为求四边形APBQ的面积的最大值设直线PA的斜率为,直线PB的斜率为,判断的值是否为常数,并说明理由.5已知椭圆的中心在原点,焦点在轴上,离心率为,且经过点,直线交椭圆于不同的两点,(1)求椭圆的方程;(2)求的取值范围;(3)若直线不过点,试问直线,的斜率之和是否为定值,若是定值求出定值,若不是定值说明理由6如图所示,椭圆的离心率为,其右准线方程为,A、B分别为椭圆的左、右顶点,过点A、B作斜率
3、分别为、,直线AM和直线BN分别与椭圆C交于点M,N(其中M在x轴上方,N在x轴下方).(1)求椭圆C的方程;(2)若直线MN恒过椭圆的左焦点,求证:为定值.7已知椭圆:的焦点为,且过点.(1)求椭圆的方程;(2)设椭圆的上顶点为,过点作直线交椭圆于,两点,记直线,的斜率分别为,试判断是否为定值?若为定值,求出该定值;若不是定值,说明理由.8椭圆:过点,离心率为,其左、右焦点分别为,且过焦点的直线交椭圆于,(1)求椭圆的方程;(2)若点的坐标为,设直线与直线的斜率分别为,试证明:9已知椭圆的左、右焦点分别是,点在椭圆上,且(1)求椭圆的标准方程;(2)过点且不过点的直线交椭圆于,两点,求证:直
4、线与的斜率之和为定值10已知圆与椭圆相交于点M(0,1),N(0,-1),且椭圆的离心率为.(1)求的值和椭圆C的方程;(2)过点M的直线交圆O和椭圆C分别于A,B两点.若,求直线的方程;设直线NA的斜率为,直线NB的斜率为,问:是否为定值?如果是,求出定值;如果不是,请说明理由.11已知圆,动圆与圆相外切,且与直线相切.(1)求动圆圆心的轨迹的方程.(2)已知点,过点的直线与曲线交于两个不同的点(与点不重合),直线的斜率之和是否为定值?若是,求出该定值;若不是,说明理由.12已知、分别是椭圆的左右顶点,、是分别是上下顶点,且为等边三角形,是上异于、的一点(1)求椭圆的离心率;(2)证明:直线
5、与直线的斜率的积为定值,并求出该定值13已知椭圆的离心为,且经过点.(1)求椭圆的方程;(2)过点的直线与椭圆交于两点(均异于点),直线与分别交直线于点和点,求证:为定值.14已知椭圆E:的离心率为,直线l:y=2x与椭圆交于两点A,B,且(1)求椭圆E的方程;(2)设C,D为椭圆E上异于A,B的两个不同的点,直线AC与直线BD相交于点M,直线AD与直线BC相交于点N,求证:直线MN的斜率为定值15已知点Q是圆上的动点,点,若线段QN的垂直平分线MQ于点P.(I)求动点P的轨迹E的方程(II)若A是轨迹E的左顶点,过点D(-3,8)的直线l与轨迹E交于B,C两点,求证:直线AB、AC的斜率之和
6、为定值.16设椭圆的左右焦点分别为,椭圆上点到两焦点的距离之和为,椭圆的离心率为.(1)求椭圆的方程;(2)直线与椭圆在第一象限交于点,点是第四象限的点且在椭圆上,线段被直线垂直平分,直线与椭圆交于点(异于点),求证直线的斜率为定值.17已知点,为椭圆的左、右焦点,都在圆上,椭圆和圆在第一象限相交于点,且线段为圆的直径.(1)求椭圆的方程;(2)椭圆的左、右顶点分别为,过定点的直线与椭圆分别交于点,且点,位于第一象限,点在线段上,直线与交于点.记直线,的斜率分别为,.求证:为定值.18已知椭圆的左右焦点分别是,点为椭圆短轴的端点,且的面积为.(1)求椭圆的方程;(2)点是椭圆上的一点,是椭圆上
7、的两动点,且直线关于直线对称,试证明:直线的斜率为定值.19如图,在平面直角坐标系中,椭圆的左、右顶点分别为A、B已知,且点在椭圆上,其中e是椭圆的离心率(1)求椭圆C的方程(2)设P是椭圆C上异与A、B的点,与x轴垂直的直线l分别交直线、于点M、N,求证:直线与直线的斜率之积是定值20在平面直角坐标系中,已知椭圆的离心率为,短轴长为2,直线与椭圆有且只有一个公共点.(1)求椭圆的方程;(2)圆的方程为,若圆与直线相交于,两点(两点均不在坐标轴上),试探究,的斜率之积是否为定值,若是,求出此定值,若不是,请说明理由.21在平面直角坐标系中,椭圆与双曲线有相同的焦点,点是椭圆上一点,且的面积等于
8、.(1)求椭圆的方程;(2)过圆上任意一点作椭圆的两条切线,若两条切线都存在斜率,求证:两切线斜率之积为定值.22已知椭圆的中点在原点,焦点在轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.(1)求椭圆的方程;(2)已知点,在椭圆上,点、是椭圆上不同的两个动点,且满足,试问直线的斜率是否为定值,请说明理由.类型二:面积为定值1-15题1在圆上任取一点,过点作轴的垂线段,为垂足.当点在圆上运动时,线段的中点的轨迹为曲线.(1)求中点的轨迹曲线的方程;(2)斜率为的直线过点且与曲线交于、两点,求的面积.2已知椭圆的两个顶点分别为,焦点在轴上,离心率为.(1)求椭圆的方程;(2)点为轴上一点,过作
9、轴的垂线交椭圆于不同的两点,过作的垂线交于点.求与的面积之比.3已知椭圆:离心率为,点在椭圆上,点坐标,直线:交椭圆于、两点,且.(1)求椭圆的方程;(2)求的面积.4已知椭圆的左,右焦点分别为,离心率为,且(1)求椭圆的方程;(2)设椭圆的下顶点为,过右焦点作与直线关于轴对称的直线,且直线与椭圆分别交于点,为坐标原点,求的面积5如图,已知点,以线段为直径的圆内切于圆.(1)证明为定值,并写出点G的轨迹E的方程;(2)设点A,B,C是曲线E上的不同三点,且,求的面积.6在直角坐标系中,椭圆:的离心率为,左、右焦点分别是,为椭圆上任意一点,的最小值为8.(1)求椭圆的方程;(2)设椭圆:,为椭圆
10、上一点,过点的直线交椭圆于,两点,且为线段的中点,过,两点的直线交椭圆于,两点.当在椭圆上移动时,四边形的面积是否为定值?若是,求出该定值;不是,请说明理由.7如图,椭圆C:的离心率,椭圆C的左、右顶点分别为A,B,又P,M,N为椭圆C上非顶点的三点设直线,的斜率分别为,(1)求椭圆C的方程,并求的值;(2)若,判断的面积是否为定值?若为定值,求出该定值;若不为定值,请说明理由8在平面直角坐标系xoy中,已知椭圆的左顶点与上顶点的距离为,且经过点.(1)求椭圆C的方程.(2)直线与椭圆C相交于P、Q两点,M是PQ的中点.若椭圆上存在点N满足,求证:PQN的面积S为定值.9已知椭圆经过点,.(1
11、)求椭圆的方程及其离心率;(2)若为椭圆上第一象限的点,直线交轴于点,直线交轴于点.求证:四边形的面积为定值.10已知椭圆C:过点,点B为其上顶点,且直线AB斜率为.()求椭圆C的方程;()设P为第四象限内一点且在椭圆上,直线与轴交于点,直线与轴交于点,求四边形的面积.11已知椭圆:的离心率为,点在椭圆上,为坐标原点.(1)求椭圆的方程; (2)已知点为椭圆上的三点,若四边形为平行四边形,证明:四边形的面积为定值,并求该定值.12已知椭圆离心率为,点与椭圆的左、右顶点可以构成等腰直角三角形(1)求椭圆的方程;(2)若直线与椭圆交于两点,为坐标原点直线的斜率之积等于,试探求的面积是否为定值,并说
12、明理由13已知点在椭圆上,设,分别为椭圆的左顶点上顶点下顶点,且点到直线的距离为.(1)求椭圆的方程;(2)设为坐标原点,为椭圆上的两点,且,求证:的面积为定值,并求出这个定值.14已知椭圆的左焦点F在直线上,且.(1)求椭圆的方程;(2)直线与椭圆交于A、C两点,线段的中点为M,射线与椭圆交于点P,点O为的重心,探求面积S是否为定值,若是,则求出这个值;若不是,则求S的取值范围.15已知如图,长为,宽为的矩形,以为焦点的椭圆恰好过两点设圆的圆心为,直线过点,且与轴不重合,直线交圆于两点,过点作的平行线交于,(1)在两个条件中任选一个条件,求点的轨迹方程;(2)根据(1)所得点的轨迹方程,直线
13、与点M轨迹交于两点,且.求证:的面积为定值.类型三:线段关系与距离为定值1-25题1在平面直角坐标系中,已知椭圆:的离心率为,且经过点.(1)求椭圆的方程;(2)设为椭圆的右焦点,直线与椭圆相切于点(点在第一象限),过原点作直线的平行线与直线相交于点,问:线段的长是否为定值?若是,求出定值;若不是,说明理由.2如图,过抛物线的焦点F任作直线l,与抛物线交于A,B两点,AB与x轴不垂直,且点A位于x轴上方.AB的垂直平分线与x轴交于D点.(1)若求AB所在的直线方程;(2)求证:为定值.3已知椭圆的离心率,为椭圆上一点.(1)求椭圆的方程;(2)已知为椭圆的右焦点,过点的直线交椭圆(异于椭圆顶点
14、)于、两点,试判断是否为定值?若是,求出该定值;若不是,说明理由.4已知椭圆的左顶点为A,右焦点为F,过点A作斜率为的直线与C相交于A,B,且,O坐标原点.(1)求椭圆的离心率e;(2)若,过点F作与直线平行的直线l,l与椭圆C相交于P,Q两点.()求的值;()点M满足,直线与椭圆的另一个交点为N,求的值.5已知圆和定点,平面上一动点满足以线段为直径的圆内切于圆,动点的轨迹记为曲线.(1)求曲线的方程;(2)直线与曲线交于不同两点、,直线,分别交轴于,两点求证:6已知椭圆C:的离心率为,过焦点且与x轴垂直的直线被椭圆C截得的线段长为2(1)求椭圆C的方程;(2)已知点,过点A的任意一条直线与椭
15、圆C交于M,N两点,求证:7已知椭圆E:的一个焦点与短轴的两个端点是正三角形的三个顶点,点在椭圆E上.(1)求椭圆E的方程;(2)设不过原点O且斜率为的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,证明:8已知椭圆的左、右焦点分别为F1、F2,直线ykx交椭圆于P,Q两点,M是椭圆上不同于P,Q的任意一点,直线MP和直线MQ的斜率分别为k1,k2(1)证明:k1k2为定值;(2)过F2的直线l与椭圆交于A,B两点,且,求|AB|9已知点在抛物线:上,直线:与抛物线有两个不同的交点.(1)求的取值范围;(2)设直线与抛物线的交点分别为,过点作与的准线平行的直
16、线,分别与直线和交于点和(为坐标原点),求证:.10如图所示,在平面直角坐标系中,已知点为椭圆的上顶点.椭圆以椭圆的长轴为短轴,且与椭圆有相同的离心率.(1)求椭圆的标准方程;(2)过点作斜率分别为的两条直线,直线与椭圆分别交于点,直线与椭圆分别交于点.(i)当时,求点的纵坐标;(ii)若两点关于坐标原点对称,求证:为定值.11已知椭圆与直线有且只有一个交点,点为椭圆上任意一点,且的最小值为.(1)求椭圆的标准方程;(2)设直线与椭圆交于不同两点,点为坐标原点,且,当的面积最大时,判断是否为定值,若是求出其值并证明,若不是请说明理由.12已知椭圆的两个焦点分别为,离心率为,过的直线与椭圆交于,
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-261217.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
五年级下册语文课件-5 古诗词三首_人教新课标 (共28张PPT).ppt
