江苏专用2020高考数学二轮复习综合仿真练五.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏 专用 2020 高考 数学 二轮 复习 综合 仿真
- 资源描述:
-
1、综合仿真练(五)1如图,在四棱锥PABCD中,ABCD,ABAD,CD2AB,平面PAD底面ABCD,PAAD,E和F分别为CD和PC的中点,求证:(1)PA底面ABCD;(2)BE平面PAD;(3)平面BEF平面PCD.证明:(1)因为平面PAD底面ABCD,且PA垂直于这两个平面的交线AD,所以PA底面ABCD.(2)因为ABCD,CD2AB,E为CD的中点,所以ABDE,且ABDE.所以四边形ABED为平行四边形所以BEAD.又因为BE平面PAD,AD平面PAD,所以BE平面PAD.(3)因为ABAD,且四边形ABED为平行四边形,所以BECD,ADCD.由(1)知PA底面ABCD,所以
2、PACD,又ADPAA,所以CD平面PAD.所以CDPD.因为E和F分别是CD和PC的中点,所以PDEF,所以CDEF.又因为CDBE,EFBEE,所以CD平面BEF.又CD平面PCD,所以平面BEF平面PCD.2(2019海安中学模拟)已知ABC内接于单位圆,且(1tan A)(1tan B)2,(1)求角C;(2)求ABC面积的最大值解:(1)(1tan A)(1tan B)2tan Atan B1tan Atan B,tan Ctan(AB)1,C.(2)ABC的外接圆为单位圆,其半径R1由正弦定理可得c2Rsin C,由余弦定理可得c2a2b22abcos C,代入数据可得2a2b2a
3、b2abab(2)ab,ab,ABC的面积Sabsin C,ABC面积的最大值为.3在平面直角坐标系xOy中,已知椭圆C:1的左顶点为A,右焦点为F,P,Q为椭圆C上两点,圆O:x2y2r2(r0)(1)若PFx轴,且满足直线AP与圆O相切,求圆O的方程;(2)若圆O的半径为,点P,Q满足kOPkOQ,求直线PQ被圆O截得的弦长的最大值. 解:(1)因为椭圆C的方程为1,所以A(2,0),F(1,0)因为PFx轴,所以P,根据对称性,可取P,则直线AP的方程为y(x2),即x2y20.由圆O与直线AP相切,得r,所以圆O的方程为x2y2.(2)易知圆O的方程为x2y23.当PQx轴时,kOPk
4、OQk,所以kOP,xP,此时得直线PQ被圆O截得的弦长为2.当PQ与x轴不垂直时,设直线PQ的方程为ykxb,P(x1,y1),Q(x2,y2)(x1x20),首先由kOPkOQ,得3x1x24y1y20,即3x1x24(kx1b)(kx2b)0,所以(34k2)x1x24kb(x1x2)4b20.(*)联立消去y,得(34k2)x28kbx4b2120,则x1x2,x1x2,将其代入(*)式,化简得2b24k23.由于圆心O到直线PQ的距离d,所以直线PQ被圆O截得的弦长l2,故当k0时,l有最大值为.综上,因为2,所以直线PQ被圆O截得的弦长的最大值为.4(2019如皋中学模拟)如图,长
5、方形材料ABCD中,已知AB2,AD4.点P为材料ABCD内部一点,PEAB于E,PFAD于F,且PE1,PF,现要在长方形材料ABCD中裁剪出四边形材料AMPN,满足MPN150,点M,N分别在边AB,AD上(1)设FPN,试将四边形材料AMPN的面积S表示为的函数,并指明的取值范围;(2)试确定点N在AD上的位置,使得四边形材料AMPN的面积S最小,并求出其最小值解:(1)在直角NFP中,因为PF,FPN,所以NFtan ,所以SAPNNAPF(1tan ).在直角MEP中,因为PE1,EPM,所以MEtanSAPMMAPE1.所以SSAPNSAPMtan tan,(2)因为Stan ta
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
人教A版高中数学必修二2.2.2 平面与平面平行的判定 课件 (共16张PPT) .ppt
