《创新设计》2016届 数学一轮(理科) 浙江专用 课时作业 第八章 解析几何-7 .doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 创新设计 创新设计2016届 数学一轮理科 浙江专用 课时作业 第八章 解析几何-7 创新 设计 2016 数学 一轮 理科 浙江 专用 课时 作业 第八 解析几何
- 资源描述:
-
1、高考资源网() 您身边的高考专家第7讲抛物线基础巩固题组(建议用时:40分钟)一、选择题1(2015合肥质量检测)抛物线x2y的焦点坐标为()A. B. C. D.解析抛物线x2y的焦点坐标是.答案D2(2014西宁复习检测)已知抛物线y22px(p0)的准线与曲线x2y24x50相切,则p的值为()A2 B1 C. D.解析曲线的标准方程为(x2)2y29,其表示圆心为(2,0),半径为3的圆,又抛物线的准线方程为x,由抛物线的准线与圆相切得23,解得p2,故选A.答案A3点M(5,3)到抛物线yax2的准线的距离为6,那么抛物线的方程是()Ay12x2 By12x2或y36x2Cy36x2
2、 Dyx2或yx2解析分两类a0,a0)有一个内接直角三角形,直角顶点在原点,两直角边OA与OB的长分别为1和8,求抛物线的方程解设直线OA的方程为ykx,k0,则直线OB的方程为yx,由得x0或x.A点坐标为,同理得B点坐标为(2pk2,2pk),由|OA|1,|OB|8,可得解方程组得k664,即k24.则p2.又p0,则p,故所求抛物线方程为y2x.10设抛物线C:y24x,F为C的焦点,过F的直线l与C相交于A,B两点(1)设l的斜率为1,求|AB|;(2)求证:是一个定值(1)解由题意可知抛物线的焦点F为(1,0),准线方程为x1,直线l的方程为yx1,设A(x1,y1),B(x2,
3、y2),由得x26x10,x1x26,由直线l过焦点,则|AB|AF|BF|x1x228.(2)证明设直线l的方程为xky1,由得y24ky40.y1y24k,y1y24,(x1,y1),(x2,y2)x1x2y1y2(ky11)(ky21)y1y2 k2y1y2k(y1y2)1y1y2 4k24k2143.是一个定值能力提升题组(建议用时:35分钟)11(2015太原模拟)已知P是抛物线y22x上动点,A,若点P到y轴的距离为d1,点P到点A的距离为d2,则d1d2的最小值是()A4 B. C5 D.解析因为点P在抛物线上,所以d1|PF|(其中点F为抛物线的焦点),则d1d2|PF|PA|
4、AF|5,当且仅当点P是线段AF与抛物线的交点时取等号,故选B.答案B12(2014四川卷)已知F为抛物线y2x的焦点,点A,B在该抛物线上且位于x轴的两侧,2(其中O为坐标原点),则ABO与AFO面积之和的最小值是()A2 B3 C. D.解析如图,可设A(m2,m),B(n2,n),其中m0,n0,则(m2,m),O(n2,n),m2n2mn2,解得mn1(舍)或mn2.lAB:(m2n2)(yn)(mn)(xn2),即(mn)(yn)xn2,令y0,解得xmn2,C(2,0)SAOBSAOCSBOC2m2(n)mn,SAOFmm,则SAOBSAOFmnmmnm23,当且仅当m,即m时等号
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-289284.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
考点01筛选并整合文中信息(PPT)-2022年高考语文二轮复习讲练测(新高考).pptx
