暑期特献:高中数学电子书——导数的应用.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
9 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 暑期 高中数学 电子书 导数 应用
- 资源描述:
-
1、导数的应用 微分学中值定理 在给出微分学中值定理的数学定义之前,我们先从几何的角度看一个问题,如下: 设有连续函数,a与b是它定义区间内的两点(ab),假定此函数在(a,b)处处可导,也就是在(a,b)内的函数图形上处处都由切线,那末我们从图形上容易直到, 差商就是割线AB的斜率,若我们把割线AB作平行于自身的移动,那么至少有一次机会达到离割线最远的一点P(x=c)处成为曲线的切线,而曲线的斜率为,由于切线与割线是平行的,因此 成立。 注:这个结果就称为微分学中值定理,也称为拉格朗日中值定理拉格朗日中值定理 如果函数在闭区间a,b上连续,在开区间(a,b)内可导,那末在(a,b)内至少有一点c
2、,使 成立。 这个定理的特殊情形,即:的情形,称为罗尔定理。描述如下: 若在闭区间a,b上连续,在开区间(a,b)内可导,且,那末在(a,b)内至少有一点c,使成立。 注:这个定理是罗尔在17世纪初,在微积分发明之前以几何的形式提出来的。 注:在此我们对这两个定理不加以证明,若有什么疑问,请参考相关书籍 下面我们在学习一条通过拉格朗日中值定理推广得来的定理柯西中值定理柯西中值定理 如果函数,在闭区间a,b上连续,在开区间(a,b)内可导,且0,那末在(a,b)内至少有一点c,使成立。 例题:证明方程在0与1之间至少有一个实根 证明:不难发现方程左端是函数的导数: 函数在0,1上连续,在(0,1
3、)内可导,且,由罗尔定理 可知,在0与1之间至少有一点c,使,即 也就是:方程在0与1之间至少有一个实根未定式问题 问题:什么样的式子称作未定式呢? 答案:对于函数,来说,当xa(或x)时,函数,都趋于零或无穷大 则极限可能存在,也可能不存在,我们就把式子称为未定式。分别记为型 我们容易知道,对于未定式的极限求法,是不能应用商的极限等于极限的商这个法则来求解的,那么我们该如何求这类问题的极限呢? 下面我们来学习罗彼塔(LHospital)法则,它就是这个问题的答案 注:它是根据柯西中值定理推出来的。罗彼塔(LHospital)法则 当xa(或x)时,函数,都趋于零或无穷大,在点a的某个去心邻域
4、内(或当xN)时,与都存在,0,且存在 则:= 这种通过分子分母求导再来求极限来确定未定式的方法,就是所谓的罗彼塔(LHospital)法则 注:它是以前求极限的法则的补充,以前利用法则不好求的极限,可利用此法则求解。 例题:求 解答:容易看出此题利用以前所学的法则是不易求解的,因为它是未定式中的型求解问题,因此我们就可以利用上面所学的法则了。 例题:求 解答:此题为未定式中的型求解问题,利用罗彼塔法则来求解 另外,若遇到 、 、 、 等型,通常是转化为型后,在利用法则求解。 例题:求 解答:此题利用以前所学的法则是不好求解的,它为型,故可先将其转化为型后在求解, 注:罗彼塔法则只是说明:对未
5、定式来说,当存在,则存在且二者的极限相同;而并不是不存在时,也不存在,此时只是说明了罗彼塔法则存在的条件破列。函数单调性的判定法 函数的单调性也就是函数的增减性,怎样才能判断函数的增减性呢? 我们知道若函数在某区间上单调增(或减),则在此区间内函数图形上切线的斜率均为正(或负),也就是函数的导数在此区间上均取正值(或负值).因此我们可通过判定函数导数的正负来判定函数的增减性.判定方法: 设函数在a,b上连续,在(a,b)内可导. a):如果在(a,b)内0,那末函数在a,b上单调增加; b):如果在(a,b)内0,那末函数在a,b上单调减少. 例题:确定函数的增减区间. 解答:容易确定此函数的
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
