《新教材》2021-2022学年数学人教A版选择性必修第一册学案:第三章 3-3-2 第1课时 抛物线的简单几何性质 WORD版含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新教材 新教材2021-2022学年数学人教A版选择性必修第一册学案:第三章 3-3-2 第1课时 抛物线的简单几何性质 WORD版含解析 2021 2022 学年 学人 选择性 必修 一册 第三
- 资源描述:
-
1、高考资源网() 您身边的高考专家温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。3.3.2抛物线的简单几何性质第1课时抛物线的简单几何性质 必备知识自主学习导思1.抛物线的几何性质主要有哪些?2焦半径的性质有哪些?抛物线的简单几何性质标准方程y22px(p0)y22px(p0)x22py(p0)x22py(p0)图形范围x0,yRx0,yRy0,xRy0,xR对称轴x轴x轴y轴y轴焦点坐标F准线方程xxyy顶点坐标O(0,0)离心率e1(1)抛物线的几何性质与椭圆、双曲线相比有哪些不同?提示:抛物线的离心率等于1,只有
2、一个焦点、一个顶点、一条对称轴、一条准线;它没有中心,也没有渐近线(2)过焦点垂直于对称轴的直线被抛物线截得的线段长度是多少?提示:这条线段是抛物线的通径,长度为2p,借助于通径可以画出较准确的抛物线1辨析记忆(对的打“”,错的打“”).(1)抛物线焦点到准线的距离等于p.()(2)抛物线的范围是xR,yR.()(3)抛物线是轴对称图形()提示:(1).抛物线焦点到准线的距离等于p.(2).抛物线的方程不同,其范围就不一样,如y22px(p0)的范围是x0,yR,故此说法错误(3).抛物线y22px(p0)的对称轴为x轴,抛物线x22py(p0)的对称轴为y轴,故此说法正确2抛物线yx2的焦点
3、坐标为()A B(4,0)C D(0,4)【解析】选D.因为抛物线yx2,所以x216y,所以抛物线的焦点坐标为(0,4).3已知过抛物线y2ax(a0)的焦点且垂直于x轴的弦长度为2,则实数a的值为()A4 B2 C1 D0【解析】选B.由题意可得焦点F,将x代入抛物线方程可得y2,解得y,所以a2.4已知正三角形的一个顶点位于坐标原点,另两个顶点在抛物线y22x上,则这个正三角形的边长是_【解析】由题意得,正三角形另外两个顶点关于x轴对称,设一个顶点坐标为,边长为a,则有tan ,解得y02,再由正弦定理sin ,解得a4.答案:4关键能力合作学习类型一由抛物线的几何性质求标准方程(数学运
4、算)【典例】1.顶点在原点,对称轴为y轴,顶点到准线的距离为4的抛物线方程是()Ax216y Bx28yCx28y Dx216y2以x轴为对称轴的抛物线的通径(过焦点且与对称轴垂直的弦)长为8,若抛物线的顶点在坐标原点,则其方程为()Ay28x By28xCy28x或y28x Dx28y或x28y3已知双曲线C1:1(a0,b0)的离心率为2.若抛物线C2:x22py(p0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为_【解析】1.选D.顶点在原点,对称轴为y轴的抛物线方程有两个:x22py,x22py(p0),由顶点到准线的距离为4,知p8,故所求抛物线的方程为x216y或x2
5、16y.2选C.设抛物线方程为y22px或y22px(p0),依题意将x或x代入y22px或y22px,得|y|p,所以2|y|2p8,p4.所以抛物线方程为y28x或y28x.3因为双曲线C1:1(a0,b0)的离心率为2,所以2,所以ba,所以双曲线的渐近线方程为xy0.所以抛物线C2:x22py(p0)的焦点到双曲线的渐近线的距离为2,所以p8,所以所求的抛物线方程为x216y.答案:x216y用待定系数法求抛物线方程的步骤提醒:求抛物线的方程时要注意抛物线的焦点位置,不同的焦点设出不同的方程【补偿训练】已知双曲线1(a0,b0)的两条渐近线与抛物线y22px(p0)的准线分别交于A,B
6、两点,O为坐标原点若双曲线的离心率为2,AOB的面积为,求抛物线的标准方程【解析】由已知得2,所以4,解得,即渐近线方程为yx.而抛物线准线方程为x,于是A,B,从而AOB的面积为p,可得p2.因为抛物线开口向右,所以其标准方程为y24x.类型二焦点弦问题(逻辑推理)【典例】已知直线l经过抛物线y26x的焦点F,且与抛物线相交于A,B两点(1)若直线l的倾斜角为60,求|AB|的值;(2)若|AB|9,求线段AB的中点M到准线的距离四步内容理解题意条件:已知抛物线方程及过抛物线焦点的直线结论:求弦长及线段的中点到准线的距离思路探求(1)写出直线方程,把直线方程和抛物线方程联立求得坐标,利用弦长
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-300480.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
