《新课标》2015年高考数学总复习配套教案:1.3简单的逻辑联结词、全称量词与存在量词.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新课标 新课 2015 年高 数学 复习 配套 教案 1.3 简单 逻辑 联结 全称 量词 存在
- 资源描述:
-
1、高考资源网( ),您身边的高考专家第一章集合与常用逻辑用语第3课时简单的逻辑联结词、全称量词与存在量词(对应学生用书(文)、(理)56页)考情分析考点新知了解命题的逆命题、否命题与逆否命题的意义;理解必要条件、充分条件、充要条件的意义;了解逻辑联结词“或”“且”“非”的含义;了解全称量词与存在量词的意义;了解含有一个量词的命题的否定的意义 会分析四种命题的相互关系. 会判断必要条件、充分条件与充要条件. 能用“或”“且”“非”表述相关的数学内容(真值表不做要求). 能用全称量词与存在量词叙述简单的数学内容. 能正确地对含有一个量词的命题进行否定.1. (选修11P20第4(1)题改编)命题“若
2、a、b、c成等比数列,则acb2”的逆否命题是_答案:若acb2,则a、b、c不成等比数列2. (选修11P20第6题改编)若命题p的否命题为q,命题q的逆否命题为r,则p与r的关系是_答案:互为逆命题3. (选修11P20第7题改编)已知p、q是r的充分条件,r是s的充分条件,q是s的必要条件,则s是p的_条件答案:必要不充分4. (原创)写出命题“若xy5,则x3且y2”的逆命题、否命题、逆否命题,并判断它们的真假答案:逆命题:若x3且y2,则xy5.是真命题否命题:若xy5,则x3或y2.是真命题逆否命题:若x3或y2,则xy5.是假命题5. 下列命题中的真命题有_(填序号) xR,x2
3、; xR,sinx1; xR,x20; xR,2x0.答案:解析:对于,x1时,x2,正确;对于,当x时,sinx1,正确;对于,x0时,x20,错误;对于,根据指数函数的值域,正确6. 命题p:有的三角形是等边三角形命题綈p:_答案:所有的三角形都不是等边三角形1. 四种命题及其关系(1) 四种命题命题表述形式原命题若p,则q逆命题若q,则p否命题若非p,则非q逆否命题若非q,则非p(2) 四种命题间的逆否关系(3) 四种命题的真假关系两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系2. 充分条件与必要条件(1) 如果pq,那么称p是q的充分条件,
4、q是p的必要条件(2) 如果pq,且qp,那么称p是q的充要条件,记作pq.(3) 如果pq,qp,那么称p是q的充分不必要条件(4) 如果qp,pq,那么称p是q的必要不充分条件(5) 如果p/ q,且q/ p,那么称p是q的既不充分也不必要条件3. 简单的逻辑联结词(1) 用联结词“且”联结命题p和命题q,记作pq,读作“p且q”(2) 用联结词“或”联结命题p和命题q,记作pq,读作“p或q”(3) 对一个命题p全盘否定记作綈p,读作“非p”或“p的否定”(4) 命题pq,pq,綈p的真假判断pq中p、q有一假为假,pq有一真为真,p与非p必定是一真一假4. 全称量词与存在量词(1) 全
5、称量词与全称命题短语“所有”“任意”“每一个”等表示全体的量词在逻辑中称为全称量词,并用符号“x”表示含有全称量词的命题,叫做全称命题全称命题“对M中任意一个x,有p(x)成立”可用符号简记为xM,p(x),读作“对任意x属于M,有p(x)成立”(2) 存在量词与存在性命题短语“有一个”“有些”“存在一个”等表示部分的量词在逻辑中称为存在量词,并用符号“x”表示含有存在量词的命题,叫做存在性命题存在性命题“存在M中的一个x,使p(x)成立”可用符号简记为xM,p(x),读作“存在一个x属于M,使p(x)成立”5. 含有一个量词的命题的否定命题命题的否定xM,p(x)xM, p(x);xM,p(
6、x)xM,p(x).备课札记题型1否命题与命题否定例1(1) 命题“若ab,则2a2b1”的否命题为_;(2) 命题:“若x2xm0没有实根,则m0”是_(填“真”或“假”)命题;(3) 命题p:“有些三角形是等腰三角形”,则p是_答案:(1) 若ab,则2a2b1(2) 真(3) 所有三角形都不是等腰三角形解析:(2) 很可能许多同学会认为它是假命题原因为当m0时显然方程有根,其实不然,由x2xm0没实根可推得m,而m|m是m|m0的真子集,由m0,则x2xm0有实根”显然为真,其实用逆否命题很容易判断它是真命题(3) p为“对任意xA,有p(x)不成立”,它恰与全称性命题的否定命题相反把下
7、列命题改写成“若p则q”的形式,并写出它们的逆命题、否命题、逆否命题(1) 正三角形的三个内角相等;(2) 已知a、b、c、d是实数,若ab,cd,则acbd.解:(1) 原命题:若一个三角形是正三角形,则它的三个内角相等逆命题:若一个三角形的三个内角相等,则这个三角形是正三角形否命题:若一个三角形不是正三角形,则它的三个内角不全相等逆否命题:若一个三角形的三个内角不全相等,那么这个三角形不是正三角形(2) 原命题:已知a、b、c、d是实数,若ab,cd,则acbd.逆命题:已知a、b、c、d是实数,若acbd,则ab且cd.否命题:已知a、b、c、d是实数,若a与b,c与d不都相等,则acb
8、d.逆否命题:已知a、b、c、d是实数,若acbd,则a与b,c与d不都相等题型2充分必要条件例2已知p:x28x200,q:x22x1m20(m0),若p是q的必要不充分条件,求实数m的取值范围解:p:x28x200,得x2或x10,设Ax|x2或x10,q:x22x1m20,得x1m,或x1m,设Bx|x1m或x1m p是q的必要非充分条件, B真包含于A,即m9. 实数m的取值范围为m9.下列四个结论正确的是_(填序号) “x0”是“x|x|0”的必要不充分条件; 已知a、bR,则“|ab|a|b|”的充要条件是ab0; “a0,且b24ac0”是“一元二次不等式ax2bxc0的解集是R
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-302945.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
