22.3 实际问题与二次函数(第1课时)课课练(人教版九年级数学上册).doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
4 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 22.3 实际问题与二次函数第1课时课课练人教版九年级数学上册 实际问题 二次 函数 课时 课课练 人教版 九年级 数学 上册
- 资源描述:
-
1、22.3 实际问题与二次函数(第1课时)1.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中ADMN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值2.用一段长为15m的篱笆围成一个一边靠墙的矩形菜园,墙长为18m,这个矩形菜园的最大面积是_.3.如图,在ABC中, B=90,AB=12cm,BC=24cm,动点P从点A开始沿AB向B以2cm/s的速度移动(不与点B重合),动点Q从点B开始BC以4cm/s的速度移动(不与点C重合)
2、.如果P,Q分别从A,B同时出发,那么经过 秒,四边形APQC的面积最小.4.如图,点E、F、G、H分别位于正方形ABCD的四条边上,四边形EFGH也是正方形,当点E位于何处时,正方形EFGH的面积最小?5.某小区在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙, 另三边用总长为40m的栅栏围住设绿化带的边长BC为xm,绿化带的面积为ym(1)求y与x之间的函数关系式,并写出自变量的取值范围.(2)当x为何值时,满足条件的绿化带的面积最大?6.某广告公司设计一幅周长为12m的矩形广告牌,广告设计费用每平方米1000元,设矩形的一边长为x(m),面积为S(m2).(
3、1)写出S与x之间的关系式,并写出自变量x的取值范围;(2)请你设计一个方案,使获得的设计费最多,并求出这个费用.参考答案:1.解:设AB=xm,则BC=(1002x)m,根据题意得x(1002x)=450,解得x1=5,x2=45.当x=5时,1002x=9020,不合题意舍去;当x=45时,1002x=10.答:AD的长为10m;设AD=xm,S=x(100x)=(x50)2+1250,当a50时,则x=50时,S的最大值为1250;当0a50时,则当0xa时,S随x的增大而增大;当x=a时,S的最大值为50aa2,综上所述,当a50时,S的最大值为1250;当0a50时,S的最大值为50aa22.3.34.解:令AB长为1,设DH=x,正方形EFGH的面积为y,则DG=1-x.当x=时,y有最小值.即当E位于AB中点时,正方形EFGH面积最小.5.解: 即 0x25,当x=20时,满足条件的绿化带面积y最大=200.6.解:(1)设矩形一边长为x,则另一边长为(6-x),S=x(6-x)=-x2+6x,其中0x6.(2)S=-x2+6x=-(x-3)2+9;当x=3时,即矩形的一边长为3m时,矩形面积最大,为9m2.这时设计费最多,为91000=9000(元).
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
六年级上册语文课件-回顾 拓展八|人教新课标 (共7张PPT).ppt
