《统考版》2022届高考数学(理科)一轮练习:专练46 高考大题专练(四) 立体几何的综合运用 WORD版含解析.docx
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 统考版 统考版2022届高考数学理科一轮练习:专练46高考大题专练四立体几何的综合运用 WORD版含解析 统考 2022 高考 数学 理科 一轮 练习 46 大题专练 立体几何 综合 运用
- 资源描述:
-
1、专练46高考大题专练(四)立体几何的综合运用1.2021全国乙卷如图,四棱锥PABCD的底面是矩形,PD底面ABCD,PDDC1,M为BC的中点,且PBAM.(1)求BC;(2)求二面角APMB的正弦值2.2021全国甲卷已知直三棱柱ABCA1B1C1中,侧面AA1B1B为正方形,ABBC2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BFA1B1.(1)证明:BFDE;(2)当B1D为何值时,面BB1C1C与面DFE所成的二面角的正弦值最小?3如图,ADBC且AD2BC,ADCD,EGAD且EGAD,CDFG且CD2FG,DG平面ABCD,DADCDG2.(1)若M为CF的中点,N
2、为EG的中点,求证:MN平面CDE;(2)求二面角EBCF的正弦值;(3)若点P在线段DG上,且直线BP与平面ADGE所成的角为60,求线段DP的长42020全国卷如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AEAD.ABC是底面的内接正三角形,P为DO上一点,PODO.(1)证明:PA平面PBC;(2)求二面角BPCE的余弦值5.2020全国卷如图,已知三棱柱ABCA1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1MN,且平面A1AMN平面EB1C1F;(2)设O
3、为A1B1C1的中心若AO平面EB1C1F,且AOAB,求直线B1E与平面A1AMN所成角的正弦值专练46高考大题专练(四)立体几何的综合运用1.解析:(1)因为PD平面ABCD,所以PDAD,PDDC.在矩形ABCD中,ADDC,故可以点D为坐标原点建立空间直角坐标系如图所示,设BCt,则A(t,0,0),B(t,1,0),M,P(0,0,1),所以(t,1,1),.因为PBAM,所以10,得t,所以BC.(2)易知C(0,1,0),由(1)可得(,0,1),(,0,0),(,1,1)设平面APM的法向量为n1(x1,y1,z1),则,即,令x1,则z12,y11,所以平面APM的一个法向量
4、n1(,1,2)设平面PMB的法向量为n2(x2,y2,z2),则,即,得x20,令y21,则z21,所以平面PMB的一个法向量为n2(0,1,1)cosn1,n2,所以二面角APMB的正弦值为.2解析:(1)因为E,F分别是AC和CC1的中点,且ABBC2,所以CF1,BF.如图,连接AF,由BFA1B1,ABA1B1,得BFAB,于是AF3,所以AC2.由AB2BC2AC2,得BABC,故以B为坐标原点,以AB,BC,BB1所在直线分别为x,y,z轴建立空间直角坐标系Bxyz,则B(0,0,0),E(1,1,0),F(0,2,1),(0,2,1)设B1Dm(0m2),则D(m,0,2),于
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
链接地址:https://www.ketangku.com/wenku/file-308359.html


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
