江苏省扬州市2018_2019学年高一数学下学期期末检测试题含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
7 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江苏省 扬州市 2018 _2019 学年 数学 学期 期末 检测 试题 解析
- 资源描述:
-
1、江苏省扬州市2018-2019学年高一数学下学期期末检测试题(含解析)参考公式:棱锥的体积,其中为底面积,为高.圆锥的侧面积,其中是圆锥底面的周长,为母线长.方差.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线的倾斜角为( )A. B. C. D. 【答案】B【解析】【分析】根据直线斜率可知,根据直线倾斜角的范围可求得结果.【详解】由直线方程可得直线斜率:设直线倾斜角为,则又 本题正确选项:【点睛】本题考查直线倾斜角的求解,关键是明确直线倾斜角与斜率之间的关系.2.若两个平面相交,则分别在这两个平面内的两条直线( )A. 平行
2、B. 异面C. 相交D. 以上皆有可能【答案】D【解析】【分析】通过图形来判断直线的位置关系即可得到结果.【详解】若,位置关系如下图所示:若,则,可知两条直线可以平行由图象知,与相交,可知两条直线可以相交由图象知,与异面,可知两条直线可以异面本题正确选项:【点睛】本题考查空间中直线的位置关系,属于基础题.3.经过点,并且在两坐标轴上的截距相等的直线有( )A. 0条B. 1条C. 2条D. 3条【答案】C【解析】【分析】若直线过原点,可知满足题意;直线不过原点时,利用直线截距式,代入点的坐标求得方程,从而得到结果.【详解】若直线过原点,则过的直线方程为:,满足题意若直线不过原点,设直线为:代入
3、,解得: 直线方程为:满足题意的直线有条本题正确选项:【点睛】本题考查在坐标轴截距相等的直线的求解,易错点是忽略直线过原点的情况.4.如图,正方体中,异面直线和所成角的大小为( )A. B. C. D. 或【答案】A【解析】【分析】连接,根据平行关系可知所求角为,易知为等边三角形,从而可知,得到所求结果.【详解】连接, 即为异面直线与所成角又 即异面直线与所成角为:本题正确选项:【点睛】本题考查异面直线所成角的求解,关键是通过平移直线找到所成角,再放入三角形中进行求解.5.已知圆,直线,则直线与圆的位置关系( )A. 相离B. 相切C. 相交D. 以上皆有可能【答案】C【解析】【分析】由圆的方
4、程可得圆心和半径,利用点到直线距离公式可用表示出圆心到直线的距离,分别在和两种情况下求解出,从而得到直线与圆相交.【详解】直线方程可整理为:由圆方程可知,圆心:;半径:圆心到直线的距离:若,则,此时直线与圆相交若,则又(当且仅当时取等号) 则,此时直线与圆相交综上所述:直线与圆相交本题正确选项:【点睛】本题考查直线与圆位置关系的判定,关键是明确直线与圆位置关系的判定是确定圆心到直线的距离与半径的大小关系,从而得到结果.6.在中,三条边分别为,若,则三角形的形状( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 不能确定【答案】A【解析】【分析】根据余弦定理可求得,可知为锐角;根据三角形
5、大边对大角的特点可知为三角形最大的内角,从而得到三角形为锐角三角形.【详解】由余弦定理可得:且 又,则 均为锐角,即为锐角三角形本题正确选项:【点睛】本题考查解三角形中三角形形状的判断,关键是能够利用余弦定理首先确定最大角所处的范围,涉及到三角形大边对大角的性质的应用.7.表示直线,表示平面,下列命题正确的是( )A. 若,则B. 若,则C. 若,则D. 若,则【答案】D【解析】【分析】根据空间中线线、线面之间的位置关系依次判断各个选项即可.详解】,此时或,错误;,此时或,错误;,此时可能平行、异面或相交,错误;垂直于同一平面的两直线平行,正确.本题正确结果:【点睛】本题考查空间中直线与直线、
6、直线与平面位置关系的相关定理的应用,属于基础题.8.已知中,将绕所在直线旋转一周,形成几何体,则几何体的表面积为( )A. B. C. D. 【答案】B【解析】【分析】首先确定旋转体为两个圆锥构成的组合体,则所求表面积为两个圆锥的侧面积之和,求出侧面积即可得到结果.【详解】由题意可知,所得几何体为以边的高为底面圆半径,AB,AC为母线的两个圆锥构成的组合体,可得底面圆半径为:,母线长为:几何体表面积为:本题正确选项:【点睛】本题考查旋转体侧面积的相关求解问题,关键是能明确旋转后所得的几何体.9.在中,角的对边分别为,若,则( )A. B. C. D. 或【答案】D【解析】【分析】根据正弦定理可
7、求得,根据的范围可求得结果.【详解】由正弦定理可得:且 或本题正确结果:【点睛】本题考查正弦定理解三角形问题,属于基础题.10.若点在圆上运动,则的最小值为( )A. B. C. D. 【答案】B【解析】【分析】由圆的方程求得圆心和半径;根据点坐标可得其轨迹为一条直线,则所求的最小值即为圆心到直线的距离减去半径,利用点到直线距离公式求得距离后,代入可得结果.【详解】由圆的方程得:圆心坐标,半径 点轨迹为:,即圆心到直线距离:本题正确选项:【点睛】本题考查圆上的点到直线上的点的距离的最小值的求解问题,关键是能够通过点的坐标得到轨迹方程.11.在中,已知的平分线,则的面积( )A. B. C. D
8、. 【答案】D【解析】【分析】根据和可求得,利用同角三角函数和二倍角公式可求得,代入三角形面积公式求得结果.【详解】为角平分线 ,即 则本题正确选项:【点睛】本题考查三角形面积公式的应用,关键是能够通过面积桥的方式,借助角平分线可构造出关于三角函数值的方程,从而使得问题得以求解.12.在平面直角坐标系中,点在圆上运动,则的最小值为( )A. B. C. D. 【答案】A【解析】【分析】根据圆的方程、可知,从而得到,进而根据比例关系得到,将问题转化为求解的最小值的问题,可知当为线段与圆的交点时,取最小值,两点间距离公式求得即为所求最小值.【详解】为圆上任意一点,圆的圆心,半径,如下图所示, ,即
9、 又(当且仅当为线段与圆的交点时取等号),即的最小值为本题正确选项:【点睛】本题考查圆的问题中的距离之和的最值问题的求解,关键是能够通过比例关系将转化为,进而变为两个线段的距离之和的最小值的求解,利用三角形三边关系可知三点共线时取最小值,属于较难题.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.某学校有教师人,男学生人,女学生人,现用分层抽样的方法从所有师生中抽取一个容量为人的样本进行某项调查,则应抽取的女学生人数为_【答案】【解析】【分析】首先计算出抽样比,再根据分层抽样的原则计算可得结果.【详解】由题意可得抽样比为:则抽取的女学生人数为:人本题正确结果:【点睛】本题考查分层抽
10、样相关计算问题,属于基础题.14.如图,某数学学习小组要测量地面上一建筑物的高度(建筑物垂直于地面),设计测量方案为先在地面选定两点,其距离为米,然后在处测得,在处测得,则此建筑物的高度为_米.【答案】【解析】【分析】由三角形内角和求得,在中利用正弦定理求得;在中,利用正弦的定义可求得结果.【详解】由题意知:在中,由正弦定理可得:即:在中,本题正确结果:【点睛】本题考查解三角形的实际应用中的测量高度的问题,涉及到正弦定理的应用问题.15.已知圆和直线,是直线上一点,若圆上存在两点,满足,则实数的取值范围是_【答案】【解析】【分析】由向量相等可知三点共线且为线段中点,则;利用勾股定理和弦长为分别
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


鄂教版七年级语文下册第8课《诗两首》精题精练.doc
