分享
分享赚钱 收藏 举报 版权申诉 / 17

类型江苏省镇江市2022-2023学年高一上学期期末数学试题.docx

  • 上传人:a****
  • 文档编号:330396
  • 上传时间:2025-11-27
  • 格式:DOCX
  • 页数:17
  • 大小:1.45MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    江苏省 镇江市 2022 2023 学年 高一上 学期 期末 数学试题
    资源描述:

    1、2022-2023学年江苏省镇江市高一(上)期末数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,集合,则( )A. B. C. D. 【答案】B【解析】【分析】先求出,进而求出.【详解】,故故选:B2. 命题“对任意,都有”的否定为( )A. 存在,使得B. 不存在,使得C. 存在,使得D. 存在,使得【答案】D【解析】【分析】利用全称量词命题的否定是特称命题可得出结论.【详解】由全称量词命题否定可知,原命题的否定为“存在,使得”.故选:D.3. 幂函数为偶函数,且在上为减函数的是( )A. B. C. D. 【答案】

    2、A【解析】【分析】根据函数性质逐项分析判断.【详解】对A:,则,故偶函数,且在上为减函数,A正确;对B:的定义域为,即定义域不关于原点对称,故为非奇非偶函数,B错误;对C:,故为偶函数,且在上为增函数,C正确;对D:,故为奇函数,D错误.故选:A.4. 已知方程的解在内,则( )A. 0B. 1C. 2D. 3【答案】B【解析】【分析】根据函数单调性结合零点存在性定理分析运算.【详解】构建,则在定义域内单调递增,故在定义域内至多有一个零点,仅在内存在零点,即方程的解仅在内,故.故选:B.5. 中国折扇有着深厚的文化底蕴.用黄金分割比例设计一把富有美感的纸扇,如图所示,在设计折扇的圆心角时,可把

    3、折扇考虑为从一圆形(半径为)分割出来的扇形,使扇形的面积与圆的面积的乘积等于剩余面积的平方.则扇形的圆心角为( )A. B. C. D. 【答案】C【解析】【分析】计算出、,根据已知条件可得出关于的方程,结合可求得的值.【详解】由题意可知,则且,即,整理可得,由题意可知,解得.故选:C.6. 若,则a,b,c的大小关系为( )A. B. C. D. 【答案】B【解析】【分析】根据指数函数以及对数函数的单调性可得,根据三角函数的有界性可判断,即可求解.【详解】,所以,故选:B7. 函数的图象大致是( )A. B. C. D. 【答案】A【解析】【分析】分析函数的奇偶性及其在上的增长速度,结合排除

    4、法可得出合适的选项.【详解】函数的定义域为,当时,当时,故对任意的,所以,函数为偶函数,排除BD选项;当时,则函数在的增长速度快于函数的增长速度,排除C选项.故选:A.8. 已知函数,正实数a,b满足,则的最小值为( )A. 2B. 4C. 6D. 8【答案】B【解析】【分析】先证明函数为奇函数,由可得,再利用基本不等式求的最小值.【详解】,函数定义域为R,关于原点对称, 所以为奇函数,有,由解析式可以看出单调递增,由,得,即,为正实数,则有,当且仅当即时等号成立,则有,所以,得,当且仅当时等号成立,则的最小值为4.故选:B.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中

    5、,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列命题为真命题的是( )A. 若,则B. 若,则C. 若,则D. 若,则【答案】BC【解析】【分析】对A、B、D:根据不等式的性质结合作差法分析判断;对C:根据指数函数单调性分析判断.【详解】对A:当时,若,则;当时,则,A为假命题;对B:,若,则,即,B为真命题;对C:在定义域内单调递增,若,则,C为真命题;对D:,若,则,即,当时,则;当时,则;D为假命题.故选:BC.10. 已知,则下列等式正确的是( )A. B. C. D. 【答案】ABD【解析】【分析】利用同角三角函数的平方关系可判断AB选项;求出、的

    6、值,可判断CD选项的正误.【详解】因为,则.对于A选项,可得,A对;对于B选项,由A选项可知,则,所以,则,B对;对于C选项,可得,则,C错;对于D选项,D对.故选:ABD.11. 已知函数,下列结论正确的是( )A. 函数恒满足B. 直线为函数图象的一条对称轴C. 点是函数图象的一个对称中心D. 函数在上为增函数【答案】AC【解析】【分析】根据诱导公式可判断A选项;利用正切型函数的对称性可判断BC选项;利用正切型函数的单调性可判断D选项.【详解】对于A选项, , A正确;对于B选项,函数无对称轴,B错;对于C选项,由可得,当时,可得,所以,点是函数图象的一个对称中心,C对;对于D选项,当时,

    7、所以,函数在上不单调,D错.故选:AC.12. 已知函数,则下列结论正确的有( )A. 若为锐角,则B. C. 方程有且只有一个根D. 方程的解都在区间内【答案】BCD【解析】【分析】对A:利用放缩可得;对B:利用做差法分析判断;对C:根据函数的单调性分析判断;对D:分类讨论,结合零点存在性定理分析判断.【详解】对A:若为锐角,则,可得,故,A错误;对B:当时,故,即,B正确;对C:,且在上单调递增,解得,C正确;对D:构建,则在上连续不断,则有:当时,则,故,可得在内无零点;当时,则,故,可得在内无零点;当时,则,故在区间内存在零点;综上所述:只在区间内存在零点,即方程的解都在区间内,D正确

    8、.故选:BCD.【点睛】方法点睛:判断函数零点的方法(1)直接求零点:令f(x)0,则方程解的个数即为零点的个数(2)零点存在性定理:利用该定理不仅要求函数在a,b上是连续的曲线,且f(a)f(b)0,还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点(3)数形结合:对于给定的函数不能直接求解或画出图形,常会通过分解转化为两个函数图象,然后数形结合,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点三、填空题:本题共4小题,每小题5分,共20分.13. _.【答案】#【解析】【分析】利用对数运算性质计算可得所求代数式的值.【详解】原式.故答案为:.14. 已知

    9、函数对任意实数恒成立,则实数的范围为_.【答案】【解析】【分析】对任意实数恒成立,则,讨论与0的大小可得答案.【详解】因对任意实数恒成立,则.当时,符合题意;当时,;当时,.综上,故答案为:15. 已知某种果蔬的有效保鲜时间(单位:小时)与储藏温度(单位:)近似满足函数关系(a,b为常数,e为自然对数底数),若该果蔬在7的保鲜时间为216小时,在28的有效保鲜时间为8小时,那么在14时,该果蔬的有效保鲜时间大约为_小时.【答案】72【解析】【分析】根据题意列出方程组,求出,确定函数解析式,再代入求值即可.【详解】由题意得:,得:,故,则,故故当时,.故答案为:7216. 已知函数,则的值域为_

    10、函数图象的对称中心为_.【答案】 . . 【解析】【分析】将函数的解析式变形为,结合不等式的基本性质可求得的值域;利用函数对称性的定义可求得函数的对称中心的坐标.【详解】因为,则,所以,所以,函数的值域为,因为,则,因此,函数图象的对称中心为.故答案为:;.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知集合,.(1)若,求;(2)若“”是“”的充分不必要条件,求实数的取值范围.【答案】(1) (2)【解析】【分析】(1)分别解出集合中的不等式,得到两个集合,再取交集;(2)依题意有有,列方程组求实数的取值范围.【小问1详解】,若,.【小问2详解】因为“

    11、”是“”的充分不必要条件,有A是B的真子集可得等号不同时取,解得,所以实数的取值范围为18. 已知,.(1)求的值;(2)若角的终边与角关于轴对称,求的值.【答案】(1) (2)【解析】【分析】(1)利用平方关系式求出和,再根据商数关系式求出;(2)根据角的终边与角关于轴对称,推出,再根据诱导公式化简所求式子,代入可求出结果.【小问1详解】因为,所以,由,得,得,得,得或,当时,由得,不符合题意;当时,由得,所以.【小问2详解】若角的终边与角关于轴对称,则,即,所以,.19. 用“五点法”作函数在一个周期内的图象时,列表计算了部分数据:0020d0(1)请根据上表数据,求出函数的表达式并写出表

    12、内实数a,b,c,d的值;(2)请在给定的坐标系内,作出函数在一个周期内的图象;(3)若存在,使得成立,求实数的取值范围.【答案】(1), (2)图象见详解 (3)【解析】【分析】(1)根据表中数据结合正弦函数性质运算求解;(2)根据题意结合五点作图法作图;(3)以为整体,结合正弦函数求的值域,再结合存在性问题分析求解.【小问1详解】由题意可得:,即,设函数的最小正周期为,则,即,可得,解得,故,.【小问2详解】补全表格得:00200则函数在一个周期内的图象如图所示:【小问3详解】,则,可得,若存在,使得成立,则,即,故实数的取值范围.20. 已知函数(且).(1)求函数的奇偶性;(2)若关于

    13、的方程有实数解,求实数的取值范围.【答案】(1)奇函数 (2)【解析】【分析】(1)求出函数的定义域,利用函数奇偶性的定义可得出结论;(2)由可得出,求出函数在上的值域,可得出实数的取值范围.【小问1详解】解:对于函数,有,则,解得,所以函数的定义域为,故函数为奇函数.【小问2详解】解:由可得,则,令,其中,因为函数、在上为增函数,故函数在上为增函数,当时,因此,实数的取值范围是.21. 某企业参加国际商品展览会,向主办方申请了平方米的矩形展位,展位由展示区(图中阴影部分)和过道(图中空白部分)两部分组成,其中展示区左右两侧过道宽度都为米,前方过道宽度为米.后期将对展位进行装修,其中展示区的装

    14、修费为元/平方米,过道的装修费为元/平方米.记展位靠墙的一条边长为米,整个展位的装修总费用为元.(1)请写出装修总费用关于边长的表达式;(2)如何设计展位的边长使得装修总费用最低?并求出最低费用.【答案】(1),其中 (2)当展位区域是边长为米的矩形区域时,装修费用最低为元【解析】【分析】(1)设展位靠墙的一边边长为米,则展示区靠墙的一边的边长为米,计算出展示区的面积,即可得出装修总费用关于边长的表达式;(2)利用基本不等式可求得的最小值,利用等号成立的条件可得出结论.【小问1详解】解:设展位靠墙的一边边长为米,则展示区靠墙的一边的边长为米,展示区另一边边长为米,由可得,所以,即,其中.【小问

    15、2详解】解:由基本不等式可得,当且仅当时,等号成立,因此,当展位区域是边长为米的矩形区域时,装修费用最小为元.22. 已知函数,.(1)判断并证明在上的单调性;(2)当时,都有成立,求实数的取值范围;(3)若方程在上有个实数解,求实数的取值范围.【答案】(1)函数在上为增函数,证明见解析 (2) (3)【解析】【分析】(1)判断出函数在上为增函数,然后任取、且,作差,因式分解后判断的符号,结合函数单调性的定义可证得结论成立;(2)令,由可得出,利用对勾函数单调性可求得实数的取值范围;(3)令,令,分析可知函数在上有两个不等的零点,根据二次函数的零点分布可得出关于实数的不等式组,即可解得实数的取值范围.【小问1详解】证明:任取、且,则,所以,所以,函数在上为增函数.【小问2详解】解:当时,令,则,则,由可得,因为函数在上单调递增,所以,所以,实数的取值范围是.【小问3详解】解:对任意的,所以,函数为偶函数,由(1)可知,函数在上为增函数,则该函数在上为减函数,令,当时,则,由可得,令,则函数在上有两个不等的零点,所以,解得.因此,实数的取值范围是.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:江苏省镇江市2022-2023学年高一上学期期末数学试题.docx
    链接地址:https://www.ketangku.com/wenku/file-330396.html
    相关资源 更多
  • 江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc江苏省淮安市南陈集中学2014-2015学年高二数学1月调查测试试题(扫描版)苏教版.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 理 试题 WORD版含答案.doc
  • 湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高二上学期期中联考数学 文 试题 WORD版含答案.doc
  • 江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc江苏省淮安市南陈集中学2014-2015学年高一上学期12月调考数学试卷 WORD版含解析.doc
  • 江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx江西省金溪县第一中学高一数学上学期第二次12月月考试题.docx
  • 湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc湖北省武汉市江夏区2012-2013学年高一上学期期中联考数学试题 WORD版含答案.doc
  • 湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc湖北省武汉市江夏一中2019-2020学年高二数学下学期3月月考试题(含解析).doc
  • 湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc湖北省武汉市汉阳区2015_2016学年七年级数学上学期期中试卷新人教版.doc
  • 湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中、江夏一中2017-2018学年高一10月联考数学试卷 WORD版含答案.doc
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx江西省重点高中2022学年高二数学上学期第三次月考试题 理.docx
  • 江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx江西省重点高中2022学年高二数学上学期第三次月考试题 文.docx
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(六).doc
  • 湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc湖北省武汉市汉阳一中2021届高三数学下学期6月仿真模拟试题(五).doc
  • 江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc江苏省淮安市六校联盟2020届高三第三次学情调查数学(理)试题(含附加题) WORD版含答案.doc
  • 江西省重点高中2022学年高一数学上学期第三次月考试题.docx江西省重点高中2022学年高一数学上学期第三次月考试题.docx
  • 湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc湖北省武汉市汉阳一中2021届高三下学期6月全国高校统一招生考试仿真模拟(六)数学试卷 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题理202005140198.doc
  • 江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc江西省重点高中2014-2015学年高二上学期第三次月考 数学理 WORD版含答案.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题文.doc
  • 江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc江苏省淮安市六校联盟2020届高三数学第三次学情调查试题 理.doc
  • 江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc江西省重点中学(赣中南五校)2015届高三联合考试最后一卷数学试题 WORD版含答案.doc
  • 湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc湖北省武汉市汉阳一中2016高三2月调考模拟考试数学理试卷 WORD版含答案.doc
  • 江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc江西省重点中学联盟2021-2022学年高二上学期第一次月考数学试题 WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第二次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(理)下学期第一次联考试题(Word版附解析).docx
  • 江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第二次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(理)试题(2015年5月2日) WORD版含答案.doc
  • 江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx江西省重点中学盟校2023届高三数学(文)下学期第一次联考试题(Word版附解析).docx
  • 湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc湖北省武汉市汉铁高级中学2015届高三5月周练数学(文)试题(2015年5月2日) WORD版含答案.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1