山东省实验中学2021届高三数学第二次诊断试题试题含解析.doc
- 1.请仔细阅读文档,确保文档完整性,对于不预览、不比对内容而直接下载带来的问题本站不予受理。
- 2.下载的文档,不会出现我们的网址水印。
- 3、该文档所得收入(下载+内容+预览)归上传者、原创作者;如果您是本文档原作者,请点此认领!既往收益都归您。
下载文档到电脑,查找使用更方便
8 0人已下载
| 下载 | 加入VIP,免费下载 |
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 实验 中学 2021 届高三 数学 第二次 诊断 试题 解析
- 资源描述:
-
1、山东省实验中学2021届高三数学第二次诊断试题试题(含解析)一选择题:本题共8小题.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集为集合,则( )A. B. C. 或D. 或【答案】C【解析】【分析】根据指数不等式求解出的解集为集合,再求解出一元二次不等式的解集为集合,结合补集、交集的概念求解出.【详解】因为,所以,所以,又因为,所以,所以,所以或,所以或,故选:C.2. 已知是实数,是纯虚数,则( )A. 1B. C. D. 【答案】A【解析】【分析】化简,令其实部为零,虚部不为零【详解】解:所以,故选:A【点睛】本题考查纯虚数的定义,基础题3. “”是“对任意的正数,”
2、的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【详解】分析:当 对任意的正数恒成立时,可得,由,所以当时,此时.所以“”是“对任意的正数,”的充分不必要条件.故选A4. 将5名志愿者分配到3个不同的奥运场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为A. 540B. 300C. 180D. 150【答案】D【解析】将分成满足题意的份有,与,两种,所以共有种方案,故正确5. 设,则的大小关系是( )A. B. C. D. 【答案】A【解析】【分析】易得,再由,利用幂函数的单调性判断.【详解】因为,且, 在上递增,所以,即,综上:
3、故选:A6. 我国古代数学著作九章算术有如下问题:“今有金箠,长五尺,新本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箱,一头粗,一头细,在粗的一段截下一尺,重四斤:在细的一端截下一尺,重二斤,问依次每一尺各重几斤?“根据已知条件,若金蕃由粗到细是均匀变化的,中间三尺的重量为A. 6斤B. 9斤C. 10斤D. 12斤【答案】B【解析】【分析】根据题意设出等差数列的首项和第五项,通过公式计算出公差,根据等差数列的性质即可求出中间三项的和.【详解】依题意,金箠由粗到细各尺构成一个等差数列,设首项,则,则,由等差数列性质得,中间三尺的重量为9斤故选B【点睛】本小题主要考
4、查中国古代数学文化史,考查等差数列的通项公式以及等差数列的性质,属于基础题.等差数列的通项公式求解有很多种方法,一种是将已知条件都转化为和的形式,然后列方程组来求解;另一种是利用,先求出公差,再来求首项.7. 已知函数若关于的方程无实根,则实数的取值范围为()A. B. C. D. 【答案】B【解析】【分析】关于的方程无实根等价于函数的图象与直线无交点,设直线与切与点求出切线方程为:由图知函数的图象与直线 无交点时实数的取值范围为实数的取值范围为【详解】因为函数所以关于的方程无实根等价于函数的图象与直线无交点,设直线与切与点由由已知有:解得,则则切线方程为:由图知:函数的图象与直线 无交点时实
5、数的取值范围为实数的取值范围为故选【点睛】本题主要考查利用导数研究函数的零点问题,考查分段函数的性质,意在考查学生对这些知识的理解掌握水平和数形结合分析推理能力.8. 我国古代人民早在几千年以前就已经发现并应用勾股定理了,勾股定理最早的证明是东汉数学家赵爽在为周髀算经作注时给出的,被后人称为“赵爽弦图”.“赵爽弦图”是数形结合思想的体现,是中国古代数学的图腾,还被用作第24届国际数学家大会的会徽.如图,大正方形是由4个全等的直角三角形和中间的小正方形组成的,若,为的中点,则( )A. B. C. D. 【答案】A【解析】【分析】设,过点作于点,根据题中条件,得到,再由平面向量的线性运算,即可得
6、出结果.【详解】设,由题意,可得,在中,可得,过点作于点,则,且,所以,所以,因此.故选:A二选择题:本题共4小题.在每小题给出的四个选项中,有多项符合题目要求.9. 已知的最小正周期为,则下列说法正确的有( )A. B. 函数在上为增函数C. 直线是函数图象的一条对称轴D. 是函数图象的一个对称中心【答案】BD【解析】【分析】首先化简函数,根据周期求,然后再判断三角函数的性质.【详解】, ,故A不正确;当时, 是函数的单调递增区间,故B正确;当时,所以不是函数的对称轴,故C不正确;、当时,所以是函数的一个对称中心,故D正确.故选:BD【点睛】本题考查三角函数的化简和三角函数的性质,本题的思路
7、是整体代入的思想,属于基础题型.10. 甲乙两个质地均匀且完全一样的四面体,每个面都是正三角形,甲四个面上分别标有数字1,2,3,4,乙四个面上分别标有数字5,6,7,8,同时抛掷这两个四面体一次,记事件为“两个四面体朝下一面的数字之和为奇数”,事件为“甲四面体朝下一面的数字为奇数”,事件为“乙四面体朝下一面的数字为偶数”,则下列结论正确的是( )A. B. C. D. 【答案】ABD【解析】【分析】根据题意,分别求得可判断A,由独立事件概率乘法公式,可判断BCD.【详解】由已知,由已知有,所以,则A正确;,则B正确;事件、不相互独立,故错误,即C错误,则D正确;综上可知正确的为ABD.故选:
8、ABD【点睛】本题考查了古典概型概率计算公式的应用,概率乘法公式的应用,属于基础题.11. 设为正实数,下列命题正确的有( )A. 若,则;B. 若,则;C. 若,则;D. 若,则.【答案】AD【解析】【分析】将,分解变形为,即可证明,即;可通过举反例的方法证明其错误性;若,去掉绝对值,将分解变形为,即可证明,同理当时也可证明,从而命题正确【详解】若,则,即,即,该选项正确;若,可取,则,该选项错误;若,则可取,而,该选项错误;由,若,则,即,即,即若,则,即,即,即该选项正确;故选:AD【点睛】方法点睛:证明不等式常用的方法有:(1)比较法;(2)综合法;(3)分析法;(4)放缩法;(5)数
9、学归纳法;(6)反证法.要根据已知灵活选择.12. 设函数,其中表示,中的最小者.说法正确的有( )A. 函数为偶函数B. 当时,有C. 当时,D. 当时,【答案】ABC【解析】【分析】的图象可由三个函数的图象画在同一个坐标系下得到(三图垒起,取最下者),然后依据图象逐个检验即可【详解】在同一坐标系中画出的图象(如图所示),故的图象为图中粗线所示的图象关于轴对称,故为偶函数,故A正确;当时,;当时,;当时,;当时,此时有,故B成立从图象上看,当时,有成立,令,则,故,故C成立取,则,故D不成立故选:ABC【点睛】一般地,若(其中表示中的较小者),则的图象是由这两个函数的图象的较低部分构成的透过
10、现象看本质,新定义题考查的还是基础数学知识, “新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.三填空题:本题共4小题.13. 的展开式中的常数项为_【答案】【解析】【分析】先求出展开式中的常数项与含的系数,再求展开式中的常数项.【详解】展开式的通项公式为:,令,解得,,令,解得,,展开式中常数项为:.故答案为:.【点睛】本题考查二项展开式常数项的求解,属于基础题.14. 若函数,则_【答案】【解析】【分析】先根据时,得当时,进而得函数是以为周期的周期函数,再根据函数周期性求值即可得答案.【详解】解:因为时,所以,故,所以,所以当时,.即当时,函数是以为周期的周期函数.所以.故答
展开阅读全文
课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


2019届人教A版数学必修二同步课后篇巩固探究:2-1-1 平面 WORD版含解析.docx
四年级上册课件Unit5 period4广东开心学英语 (共14张PPT).ppt
