分享
分享赚钱 收藏 举报 版权申诉 / 23

类型山东省德州市宁津县第一中学2019-2020学年高二数学下学期期末考试题(含解析).doc

  • 上传人:a****
  • 文档编号:468918
  • 上传时间:2025-12-08
  • 格式:DOC
  • 页数:23
  • 大小:1.71MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    山东省 德州市 宁津县 第一 中学 2019 2020 学年 数学 学期 期末 考试题 解析
    资源描述:

    1、山东省德州市宁津县第一中学2019-2020学年高二数学下学期期末考试题(含解析)第卷(共60分)一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则( )A. B. C. D. 【答案】C【解析】【分析】由集合,能求出AB【详解】集合,又,AB=0,1.故选:C.【点睛】本题考查交集及其运算,结合函数定义域、值域知识的考查,属于基础题.2. 在复数范围内,实系数一元二次方程一定有根,已知方程的一个根为1+i(i为虚数单位),则( )A. 1-iB. -1+iC. 2iD. 2+i【答案】B【解析】【分析】利用实系数一元二次

    2、方程的虚根成对原理和根与系数的关系,再根据复数代数形式的除法法则计算即可得出【详解】解:是关于的实系数一元二次方程的一个根,也是此方程一个虚根,所以故选:B【点睛】本题考查了实系数一元二次方程的虚根成对原理和根与系数的关系以及复数代数形式的除法运算,属于基础题3. 已知,则a,b,c的大小关系为( )A. B. C. D. 【答案】D【解析】【分析】根据指数函数及对数函数的性质分别判断的范围,即可得解;【详解】解:因为,又,即,即,所以,故选:D【点睛】本题考查指数函数、对数函数的性质的应用,属于基础题.4. 函数的部分图象大致是( )A. B. C. D. 【答案】A【解析】分析】由的图象关

    3、于直线对称,排除C、D;当时,所以,排除B.【详解】设,因为,所以的图象关于轴对称.所以的图象关于直线对称,排除C、D;当时,所以,排除B,故选:A【点睛】解决本类题时,通常是利用函数的单调性、奇偶性、函数值等排除选项.5. 已知,若是的充分不必要条件,则的取值范围为( )A. B. C. D. 【答案】A【解析】【分析】解绝对值不等式和分式不等式对命题进行化简,依据二者的关系可得,即可求出的取值范围.【详解】解:因为,所以.即,因为,所以,即.因为是的充分不必要条件,所以,解得.故选:A.【点睛】本题考查了已知命题关系求参数的取值范围,考查了绝对值不等式的求解,考查了分式不等式的求解.本题的

    4、关键是对命题进行化简.6. 已知函数,若,则实数的取值范围是( )A. B. C. D. 【答案】D【解析】【分析】画出函数图像,根据图像得到函数单调递增,故,解得答案.【详解】,如图所示:画出函数图像,根据图像知函数单调递增,即,解得或.故选:D.【点睛】本题考查了根据函数单调性解不等式,画出函数图像确定单调性是解题的关键.7. 某市抽调两个县各四名医生组成两个医疗队分别去两个乡镇开展医疗工作,每队不超过五个人,同一个县的医生不能全在同一个队,且同县的张医生和李医生必须在同一个队,则不同的安排方案有( )种.A. 36B. 28C. 68D. 84【答案】C【解析】【分析】设两个乡镇分别为甲

    5、乡镇和乙乡镇,对甲乡镇派遣的人数进行分类讨论,并计算出每种情况下的安排方案的种数,利用分类加法计数原理可得结果.【详解】若甲乡镇派遣三名医生,则共有,若甲乡镇派遣四名医生,则共有,若甲乡镇派遣五名医生,则共有,综上可得:不同的派遣方案有种.故选:【点睛】本题考查人员分配问题,考查分类讨论基本思想的应用,属于中档题.8. 已知是函数的导数,且,当时,则不等式的解集是( )A. B. C. D. 【答案】D【解析】【分析】构造函数,根据条件确定其单调性与奇偶性,化简不等式为,再根据单调性与奇偶性转化不等式为,解得结果.【详解】设,则.因为当时,所以当时,即在上单调递增.因为,所以是偶函数.因为,所

    6、以,即,,则,解得.故选:D【点睛】本题考查函数单调性、奇偶性、利用单调性与奇偶性解不等式,考查综合分析求解能力,属中档题.二、多选题(共4小题,每小题5分共20分.全部选对的得5分,部分选对的得3分,有选错的得0分)9. 下列有关说法正确的是( )A. 的展开式中含项的二项式系数为20;B. 事件为必然事件,则事件、是互为对立事件;C. 设随机变量服从正态分布,若,则与的值分别为,;D. 甲、乙、丙、丁4个人到4个景点旅游,每人只去一个景点,设事件“4个人去的景点各不相同”,事件“甲独自去一个景点”,则.【答案】CD【解析】【分析】由二项式定理得:的展开式中含项的二项式系数为,即可判断;由对

    7、立事件与互斥事件的概念,进行判断;由正态分布的特点,即可判断;由条件概率的公式,计算即可判断.【详解】对于,由二项式定理得:的展开式中含项的二项式系数为,故错误;对于,事件为必然事件,若,互斥,则事件、是互为对立事件;若,不互斥,则事件、不是互为对立事件,故错误对于,设随机变量服从正态分布,若,则曲线关于对称,则与的值分别为,故正确对于,设事件 “4个人去的景点不相同”,事件 “甲独自去一个景点”,则(A),(B),则,故正确;故选:【点睛】本题考查命题的真假判断和应用,考查事件的关系、条件概率的求法,考查二项式定理的判定方法和正态分布的特点,考查判断和推理能力,是中档题10. 已知奇函数是定

    8、义在上的减函数,且,若,则下列结论一定成立的是( )A. B. C. D. 【答案】AC【解析】【分析】A.由为定义在上的奇函数,所以,可得,可判断选项A;由,又为定义在上的减函数,且,从而可判断选项B;由题意,根据是定义在上的减函数,则,可判断选项C;因为,所以,可判断选项D.【详解】因为为定义在上的奇函数,所以,因为,所以,故A正确;因为为定义在上的减函数,且,即所以,故B不一定成立;因为,所以,所以,因为是定义在上的减函数,所以,所以,即,故C正确;因为,所以,所以,选项D错误.【点睛】本题考查函数的单调性和奇偶性的综合应用,考查赋值法的应用,属于中档题.11. 已知为定义在取上的偶函数

    9、,当时,有,且当时,下列命题错误的是( )A. B. 函数在定义域上是周期为2的函数C. 直线与函数的图象有2个交点D. 函数的值域为【答案】A【解析】【分析】根据已知条件中函数是偶函数且时,有以及时,画出函数图象,逐一分析四个结论的真假,可得答案.【详解】当时,有,时,是周期为2的函数,且为定义在取上的偶函数,故图象如图, ,故A正确.由图知,所以函数在定义域上是周期为2的函数,故B不正确.由图知直线与函数的图象有1个交点,故C不正确.函数的值域为,故D不正确.【点睛】本题主要考查了函数的奇偶性,周期性,单调性,函数零点的个数判断,属于中档题.12. 已知函数的定义域为,导函数为,且,则(

    10、)A. B. 在处取得极大值C. D. 在单调递增【答案】ACD【解析】【分析】根据题意可设,根据求,再求判断单调性求极值即可.【详解】函数的定义域为,导函数为,即满足可设(为常数),解得,满足C正确,且仅有B错误,A、D正确故选:ACD【点睛】本题主要考查函数的概念和性质,以及利用导数判断函数的单调性和极值点,属于中档题.卷(非选择题共90分)三、填空题:本题共4小题,每小题5分,共20分.13. 随机变量的取值为、,则_.【答案】【解析】【分析】设,可得出,可求出的表达式,利用方差公式可求出的值,即可求出的值.【详解】设,其中,可得出,解得,因此,.故答案为:.【点睛】本题考查利用随机变量

    11、方差求数学期望,解题的关键就是列出方程求解,考查运算求解能力,属于中等题.14. 加工某种零件需要两道工序,第一道工序出废品的概率为0.4,两道工序都出废品的概率为0.2,则在第一道工序出废品的条件下,第二道工序又出废品的概率为_【答案】0.5【解析】分析:利用条件概率求解.详解:设第一道工序出废品为事件 则 ,第二道工序出废品为事件,则根据题意可得,故在第一道工序出废品的条件下,第二道工序又出废品的概率 即答案为0.5点睛:本题考查条件概率的求法,属基础题.15. 已知是奇函数,且当时,.若,则_.【答案】-3【解析】分析】当时,代入条件即可得解.【详解】因为是奇函数,且当时,又因为,所以,

    12、两边取以为底的对数得,所以,即【点睛】本题主要考查函数奇偶性,对数的计算渗透了数学运算、直观想象素养使用转化思想得出答案16. 若,则_; _【答案】 (1). 300 (2). 5120【解析】【分析】由二项式的通项公式可知;对左右两边分求导得,然后令,可求出的值.【详解】解:因为通项公式,所以因为,两边求导可得,令,所以故答案为:300;5120【点睛】此题考查二项式展开式的系数的关系,利用了赋值法求解,属于基础题.四、解答题(本大题共6小题,17题10分,18-22题每小题12分,共70分)17. (1)设集合,且,求实数m的值.(2)设,是两个复数,已知,且是实数,求.【答案】(1)

    13、或或 (2) 或【解析】【分析】(1)解方程得到集合,再分别讨论和两种情况,即可得出结果;(2)先设,根据题中条件,得到,即可求出结果.【详解】解:(1)由解得:或,又当时,此时符合题意. 当时,则.由得, 所以或解得:或综上所述:或或 (2)设,即 又,且,是实数, 由得,或,或【点睛】本题主要考查由集合间的关系求参数的问题,以及复数的运算,熟记子集的概念,以及复数的运算法则即可,属于常考题型.18. 已知展开式前三项的二项式系数和为22(1)求的值;(2)求展开式中的常数项;(3)求展开式中二项式系数最大的项【答案】(1);(2);(3).【解析】【分析】1利用公式展开得前三项,二项式系数

    14、和为22,即可求出n2利用通项公式求解展开式中的常数项即可3利用通项公式求展开式中二项式系数最大的项【详解】解:由题意,展开式前三项的二项式系数和为221二项式定理展开:前三项二项式系数为:,解得:或舍去即n的值为62由通项公式,令,可得:展开式中的常数项为;是偶数,展开式共有7项则第四项最大展开式中二项式系数最大的项为【点睛】本题主要考查二项式定理的应用,通项公式的有关计算,属于基础题19. 设函数.(1)若,求在处的切线方程;(2)若在定义域上单调递增,求实数的取值范围 .【答案】(1); (2).【解析】【分析】(1)将a的值代入f(x),先求f(e),再求f(e),即可得切线方程;(2

    15、)函数单调递增则,即,整理分离未知量a,再根据x取值范围求得实数a的范围【详解】(1)当时,所以又因,所以切线方程为 . (2)当时,令,所以,所以.【点睛】本题考查函数的导数,求函数中未知量的取值范围,首先分离参变量,再根据新构建的函数的性质求得未知量范围20. 携号转网,也称作号码携带、移机不改号,即无需改变自己的手机号码,就能转换运营商,并享受其提供的各种服务2019年11月27日,工信部宣布携号转网在全国范围正式启动某运营商为提质量保客户,从运营系统中选出300名客户,对业务水平和服务水平的评价进行统计,其中业务水平的满意率为,服务水平的满意率为,对业务水平和服务水平都满意的客户有18

    16、0人()完成下面列联表,并分析是否有的把握认为业务水平与服务水平有关;对服务水平满意人数对服务水平不满意人数合计对业务水平满意人数对业务水平不满意人数合计()为进一步提高服务质量,在选出的对服务水平不满意的客户中,抽取2名征求改进意见,用表示对业务水平不满意的人数,求的分布列与期望;()若用频率代替概率,假定在业务服务协议终止时,对业务水平和服务水平两项都满意的客户流失率为,只对其中一项不满意的客户流失率为,对两项都不满意的客户流失率为,从该运营系统中任选4名客户,则在业务服务协议终止时至少有2名客户流失的概率为多少?附:,0.100.050.0250.0100.0050.0012.7063.

    17、8415.0246.6357.87910.828【答案】()列联表详见解析,有的把握认为业务水平满意与服务水平满意有关;()分布列详见解析,期望为;()【解析】【分析】()根据所给数据列表,计算后比较临界值即可得出结论;()根据超几何分布得出随机变量的概率,列出分布列求期望即可;()由互斥事件和的概率公式计算运营系统中任选一名客户流失的概率,从运营系统中任选4名客户流失人数服从二项分布 ,根据二项分布求解即可.【详解】()由题意知对业务满意的有260人,对服务不满意的有100人,得列联表对服务水平满意人数对服务水平不满意人数合计对业务水平满意人数18080260对业务水平不满意人数202040

    18、合计200100300经计算得,所以有的把握认为业务水平满意与服务水平满意有关()的可能值为0,1,2则,012()在业务服务协议终止时,对业务水平和服务水平都满意的客户流失的概率为,只有一项满意的客户流失的概率为,对二者都不满意的客户流失的概率为所以从运营系统中任选一名客户流失的概率为,故在业务服务协议终止时,从运营系统中任选4名客户,至少有2名客户流失的概率为【点睛】本题主要考查了独立性检验,离散型随机变量的分布列与期望,互斥事件的和,二项分布,考查了推理能力与运算能力,属于较难题目.21. 已知函数(为常数).(1)若在处的切线与直线垂直,求的值;(2)若,讨论函数的单调性;(3)若为正

    19、整数,函数恰好有两个零点,求的值.【答案】(1);(2)见解析;(3).【解析】【分析】(1)由题意得出,即可求出实数的值;(2)由,可得出,对与的大小关系进行分类讨论,分析导数的符号,可得出函数的单调增区间和减区间;(3)分、和三种情况讨论,结合(2)中函数的单调性以及零点存在定理来判断出函数的零点个数,可得出整数的值.【详解】(1)由题意,则,由于函数的图象在处的切线与直线垂直,则,所以,因此,;(2),则.若时,当或时,时,所以在和单调递增,在单调递减,若时,对,恒成立,在单调递增;若时,当或时,时,所以在和单调递增,在单调递减;(3)因为为正整数,若,则,由(2)知在和单调递增,在单调

    20、递减,又,所以在区间内仅有实根,又,所以在区间内仅有实根.此时,在区间内恰有实根;若,在单调递增,至多有实根.若,令,则,所以.由(2)知在单调递减,在和单调递增,所以,所以在至多有实根.综上,.【点睛】本题考查利用切线斜率求参数、利用导数求含参数函数的单调区间以及利用导数研究函数的零点问题,一般结合函数的单调性与零点存在定理来分析,考查分析问题和解决问题的能力,属于中等题.22. 随着中美贸易战的不断升级,越来越多的国内科技巨头加大了科技研发投入的力度中华技术有限公司拟对“麒麟”手机芯片进行科技升级,根据市场调研与模拟,得到科技升级投入x(亿元与科技升级直接收益y(亿元)的数据统计如下:序号

    21、123456789101112x2346810132122232425y1322314250565868.56867.56666当时,建立了y与x的两个回归模型:模型:;模型:;当时,确定y与x满足的线性回归方程为(1)根据下列表格中的数据,比较当时模型、的相关指数的大小,并选择拟合精度更高、更可靠的模型,预测对“麒麟”手机芯片科技升级的投入为17亿元时的直接收益回归模型模型模型回归方程182.479.2(附:刻画回归效果的相关指数,)(2)为鼓励科技创新,当科技升级的投入不少于20亿元时,国家给予公司补贴5亿元,以回归方程为预测依据,比较科技升级投入17亿元与20亿元时公司实际收益的大小(附

    22、:用最小二乘法求线性回归方程的系数:,)(3)科技升级后,“麒麟”芯片的效率X大幅提高,经实际试验得X大致服从正态分布公司对科技升级团队的奖励方案如下:若芯片的效率不超过50%,不予奖励:若芯片的效率超过50%,但不超过53%,每部芯片奖励2元;若芯片的效率超过53%,每部芯片奖励4元记为每部芯片获得的奖励,求(精确到0.01)(附:若随机变量,则,)【答案】(1)见解析(2)技术升级投入20亿元时,公司的实际收益更大(3)2.27元【解析】【分析】(1)由表格中的数据,所以,转化,利用相关指数的定义即得解;(2)当时,由已知可得,可得,可得y与x满足的线性回归方程,代入计算即得结论;(3)由,所以,即得解.【详解】解:(1)由表格中的数据,所以,所以可见模型的相关指数小于模型的相关指数所以回归模型的拟合效果更好所以当亿元时,科技升级直接收益的预测值为(亿元)(2)当时,由已知可得所以所以当时,y与x满足的线性回归方程为当时,科技升级直接收益的预测值为亿元当亿元时,实际收益的预测值为亿元亿元,所以技术升级投入20亿元时,公司的实际收益更大(3)因为,所以;所以(元)【点睛】本题考查了线性回归方程、回归系数,正态分布等知识点,考查了学生综合分析,转化划归,数学运算能力,属于中档题.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:山东省德州市宁津县第一中学2019-2020学年高二数学下学期期末考试题(含解析).doc
    链接地址:https://www.ketangku.com/wenku/file-468918.html
    相关资源 更多
  • (新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx(新高考)2023版高考数学一轮总复习 第7章 第6讲 空间向量的应用课件.pptx
  • (新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf(新课标)2022年中考数学 专题强化训练 3.1平面直角坐标系及函数的图象(pdf) 新人教版.pdf
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)坐标系与参数方程(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十四)不等式选讲(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十五)不等式选讲(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)导数与不等式(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十二)函数、导数与方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)导数与函数的零点问题(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十三)坐标系与参数方程(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)导数的简单应用(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(二十一)函数、导数与不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(九)数列通项与求和(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(三)不等式与合情推理(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(七)三角恒等变换与解三角形(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、常用逻辑用语(文含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc(全国版)2021届高考数学二轮复习 专题检测(一)集合、复数、常用逻辑用语(理含解析).doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 理.doc
  • (全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc(全国版1)辽宁省葫芦岛市2020届高三数学5月联合考试试题 文.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理.doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)理 (2).doc
  • (全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc(全国卷)河南省天一大联考2020-2021学年高三数学下学期阶段性测试试题(六)文.doc
  • (全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc(全国卷)河北省衡水中学2021届高三数学第一次联合考试试题.doc
  • (全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc(全国卷)四川省南充市仪陇宏德中学2021届高考数学模拟卷(一)理.doc
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1