分享
分享赚钱 收藏 举报 版权申诉 / 6

类型2021届高考数学一轮总复习 第二章 函数、导数及其应用 课时作业11 函数与方程(含解析)苏教版.doc

  • 上传人:a****
  • 文档编号:479695
  • 上传时间:2025-12-08
  • 格式:DOC
  • 页数:6
  • 大小:140.50KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021届高考数学一轮总复习 第二章 函数、导数及其应用 课时作业11 函数与方程含解析苏教版 2021 高考 数学 一轮 复习 第二 函数 导数 及其 应用 课时 作业 11 方程 解析 苏教版
    资源描述:

    1、课时作业11函数与方程一、选择题1函数f(x)(lnx)23lnx2的零点是(D)A(e,0)或(e2,0)B(1,0)或(e2,0)C1或e2De或e2解析:f(x)(lnx)23lnx2(lnx1)(lnx2),由f(x)0得xe或xe2,故选D.2函数f(x)a的零点为1,则实数a的值为(B)A2BC.D2解析:函数f(x)a的零点为1,所以f(1)a0,解得a.3函数f(x)2xlog2x3在区间(1,2)内的零点个数是(B)A0B1C2D3解析:由题意得函数f(x)在(0,)上单调递增,且f(1)1,f(2)2,则f(1)f(2)0,根据零点存在性定理可得,函数f(x)在区间(1,2

    2、)内有1个零点,故选B.4若函数f(x)axb有一个零点是2,则函数g(x)bx2ax的零点是(C)A0,2B0,C0,D2,解析:函数f(x)axb有一个零点是2,2ab0,g(x)2ax2axax(2x1),函数g(x)的零点为0和,故选C.5方程4x2(m2)xm50的一根在区间(1,0)内,另一根在区间(0,2)内,则m的取值范围是(B)A.BC.(5,) D解析:设f(x)4x2(m2)xm5,方程4x2(m2)xm50的一根在区间(1,0)内,另一根在区间(0,2)内,即解得mb,cd.若f(x)2 019(xa)(xb)的零点为c,d,则下列不等式正确的是(A)AacdbBabc

    3、dCcdabDcabd解析:设g(x)(xa)(xb),则g(x)的零点为a,b.函数f(x)2 019g(x)的图象可看作函数yg(x)的图象向上平移2 019个单位,如图所示,则有acdb,所以选A.7(2020湖南娄底模拟)若x1是方程xex1的解,x2是方程xlnx1的解,则x1x2等于(A)A1B1Ce D解析:考虑到x1,x2是函数yex、函数ylnx分别与函数y的图象的公共点A,B的横坐标,而A,B两点关于直线yx对称,因此x1x21.故选A.8(2019浙江卷)设a,bR,函数f(x)若函数yf(x)axb恰有3个零点,则(C)Aa1,b0Ba0Ca1,b1,b0解析:由题意可

    4、得,当x0时,f(x)axbx3(a1)x2b,令f(x)axb0,则bx3(a1)x2x22x3(a1)因为对任意的xR,f(x)axb0有3个不同的实数根,所以要使满足条件,则当x0时,bx22x3(a1)必须有2个零点,所以0,解得a1.所以b0.故选C.二、填空题9函数f(x)xx的零点个数为1.解析:令f(x)0,得xx.在同一坐标系中画出函数yx与yx的图象如图所示,由图可知两函数图象有1个交点,故f(x)的零点只有一个10在平面直角坐标系xOy中,若直线y2a与函数y|xa|1的图象只有一个交点,则a的值为.解析:函数y|xa|1的图象如图所示,因为直线y2a与函数y|xa|1的

    5、图象只有一个交点,故2a1,解得a.11若二次函数f(x)x22xm在区间(0,4)上存在零点,则实数m的取值范围是(8,1解析:mx22x在(0,4)上有解,又x22x(x1)21,yx22x在(0,4)上的值域为(8,1,84.过原点与f(x)lnx的图象相切的直线的斜率,得xe2.故实数a的取值范围是.三、解答题13已知yf(x)是定义域为R的奇函数,当x0,)时,f(x)x22x.(1)写出函数yf(x)的解析式;(2)若方程f(x)a恰有3个不同的解,求实数a的取值范围解:(1)设x0,所以f(x)x22x.又因为f(x)是奇函数,所以f(x)f(x)x22x.所以f(x)(2)方程

    6、f(x)a恰有3个不同的解,即yf(x)与ya的图象有3个不同的交点作出yf(x)与ya的图象如图所示,故若方程f(x)a恰有3个不同的解,只需1a0.所以f(x)minf(1)4a4,a1.故函数f(x)的解析式为f(x)x22x3.(2)因为g(x)4lnxx4lnx2(x0),所以g(x)1.令g(x)0,得x11,x23.当x变化时,g(x),g(x)的取值变化情况如下:x(0,1)1(1,3)3(3,)g(x)00g(x)极大值极小值当0x3时,g(x)g(1)40时,f(x)是增函数,f(3)0,则函数g(x)f(x)lg|x1|的零点个数为3.解析:画出函数yf(x)和ylg|x1|的大致图象,如图所示由图象知,函数g(x)f(x)lg|x1|的零点的个数为3.

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021届高考数学一轮总复习 第二章 函数、导数及其应用 课时作业11 函数与方程(含解析)苏教版.doc
    链接地址:https://www.ketangku.com/wenku/file-479695.html
    相关资源 更多
  • 【官方原版】2024九省联考数学试卷.pdf【官方原版】2024九省联考数学试卷.pdf
  • 【九省联考模式】2024届吉林长春五校高三上学期联合模拟考试数学试题.pdf【九省联考模式】2024届吉林长春五校高三上学期联合模拟考试数学试题.pdf
  • 【九省联考】河南部分重点高中2024届高三上学期期末联考数学试卷.pdf【九省联考】河南部分重点高中2024届高三上学期期末联考数学试卷.pdf
  • 【九省联考】江苏省四校联合2024届高三新题型适应性考试数学试题.pdf【九省联考】江苏省四校联合2024届高三新题型适应性考试数学试题.pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形8、解三角形及其应用(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形8、解三角形及其应用(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形7、三角函数模型及其应用(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形7、三角函数模型及其应用(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形6、y%3dA的图象(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形6、y%3dA的图象(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形5、三角函数的图象与性质(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形5、三角函数的图象与性质(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形4、二倍角的正弦、余弦与正切(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形4、二倍角的正弦、余弦与正切(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形3、两角和与差的三角函数(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形3、两角和与差的三角函数(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形2、同角三角函数基本关系及诱导公式(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形2、同角三角函数基本关系及诱导公式(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形1、弧度制与任意角的三角函数(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形1、弧度制与任意角的三角函数(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明7、合情推理与演绎推理(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明7、合情推理与演绎推理(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明5、数列求和(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明5、数列求和(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明4、等差、等比数列的综合(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明4、等差、等比数列的综合(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明3、等比数列(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明3、等比数列(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明2、等差数列(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明2、等差数列(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明1、数列的概念(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明1、数列的概念(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第八章5、空间几何体的表面积与体积(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第八章5、空间几何体的表面积与体积(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第八章3、直线与平面的垂直(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第八章3、直线与平面的垂直(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数9、函数的综合应用(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数9、函数的综合应用(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数8、函数模型及其应用(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数8、函数模型及其应用(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数7、函数与方程(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数7、函数与方程(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数6、函数的图象(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数6、函数的图象(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数5、对数与对数函数(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数5、对数与对数函数(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数3、二次函数与幂函数(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数3、二次函数与幂函数(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数2、函数的奇偶性、单调性及周期性(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数2、函数的奇偶性、单调性及周期性(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数1、函数及其表示(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数1、函数及其表示(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第九章平面解析几何初步9、轨迹问题(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第九章平面解析几何初步9、轨迹问题(pdf含解析).pdf
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1