分享
分享赚钱 收藏 举报 版权申诉 / 11

类型2021高考数学人教版一轮复习多维层次练:第八章 第5节第2课时 直线与椭圆 WORD版含解析.doc

  • 上传人:a****
  • 文档编号:522178
  • 上传时间:2025-12-09
  • 格式:DOC
  • 页数:11
  • 大小:170KB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2021高考数学人教版一轮复习多维层次练:第八章 第5节第2课时 直线与椭圆 WORD版含解析 2021 高考 学人 一轮 复习 多维 层次 第八 课时 直线 椭圆 WORD 解析
    资源描述:

    1、多维层次练49A级基础巩固1直线ykxk1与椭圆1的位置关系为()A相交 B相切C相离 D不确定解析:由于直线ykxk1k(x1)1过定点(1,1),又(1,1)在椭圆内,故直线与椭圆相交答案:A2(2020张家口市期末)椭圆1中,以点M(1,2)为中点的弦所在直线的斜率为()A. B. C. D解析:设弦的两端点为A(x1,y1),B(x2,y2),代入椭圆得两式相减得0,即,所以,又M(1,2)为弦AB的中点,所以x1x22,y1y24,所以,即,所以弦所在的直线的斜率为.答案:D3若直线axby30与圆x2y23没有公共点,设点P的坐标为(a,b),则过点P的一条直线与椭圆1的公共点的个

    2、数为()A0 B1 C2 D1或2解析:由题意得,圆心(0,0)到直线axby30的距离为 ,所以a2b23.又a,b不同时为零,所以0a2b23.由0a2b23,可知|a|,|b|0,即t2b0)的左、右焦点分别为F1,F2,焦距为2c.若直线y(xc)与椭圆E的一个交点M满足MF1F22MF2F1,则该椭圆的离心率等于_解析:由已知得直线y(xc)过M、F1两点,所以直线MF1的斜率为,所以MF1F260,则MF2F130,F1MF290,则MF1c,MF2c,由点M在椭圆E上知,cc2a,故e1.答案:18已知直线MN过椭圆y21的左焦点F,与椭圆交于M,N两点直线PQ过原点O与MN平行

    3、,且PQ与椭圆交于P,Q两点,则_解析:不妨取直线MNx轴,椭圆y21的左焦点F(1,0),令x1,得y2,所以y,所以|MN|,此时|PQ|2b2,则2.答案:29已知椭圆C:1(ab0)的离心率为,其中左焦点为F(2,0)(1)求椭圆C的方程;(2)若直线yxm与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2y21上,求m的值解:(1)由题意,得解得所以椭圆C的方程为1.(2)设点A,B的坐标分别为(x1,y1),(x2,y2),线段AB的中点为M(x0,y0),由消去y得,3x24mx2m280,968m20,所以2mb0)的右焦点为F(1,0),且点P在椭圆C上,O为坐标原点(

    4、1)求椭圆C的标准方程;(2)设过定点T(0,2)的直线l与椭圆C交于不同的两点A、B,且AOB为锐角,求直线l的斜率k的取值范围解:(1)由题意,得c1,所以a2b21.因为点P在椭圆C上,所以1,可解得a24,b23,则椭圆C的标准方程为1.(2)依题意知直线斜率存在,不妨设直线l的方程为ykx2,点A(x1,y1),B(x2,y2),由得(4k23)x216kx40.因为直线与椭圆有两个交点,所以48(4k21)0,即k2,由根与系数的关系,得x1x2,x1x2.因为AOB为锐角,所以0,即x1x2y1y20.所以x1x2(kx12)(kx22)0,即(1k2)x1x22k(x1x2)4

    5、0,(1k2)2k40,0,所以k2,综上k2,解得k或k.所以所求直线的斜率的取值范围为k或kb0)的焦点为F1(1,0),F2(1,0)过F2作x轴的垂线l,在x轴的上方,l与圆F2:(x1)2y24a2交于点A,与椭圆C交于点D.连接AF1并延长交圆F2于点B,连接BF2交椭圆C于点E,连接DF1.已知DF1.(1)求椭圆C的标准方程;(2)求点E的坐标解:(1)设椭圆C的焦距为2c.因为F1(1,0),F2(1,0),所以F1F22,c1.又因为DF1,AF2x轴,所以DF2.因此2aDF1DF24,从而a2.由b2a2c2,得b23.因此,椭圆C的标准方程为1.(2)由(1)知,椭圆

    6、C:1,a2.因为AF2x轴,所以点A的横坐标为1.将x1代入圆F2的方程(x1)2y216,解得y4.因为点A在x轴上方,所以A(1,4)又F1(1,0),所以直线AF1:y2x2.由得5x26x110,解得x1或x.将x代入y2x2,得y.因此B.又F2(1,0),所以直线BF2:y(x1)由得7x26x130,解得x1或x.又因为E是线段BF2与椭圆的交点,所以x1.将x1代入y(x1),得y.因此E.C级素养升华14(多选题)已知椭圆1的左、右焦点分别为F1,F2,过F1的直线l1与过F2的直线l2交于点M,设M的坐标为(x0,y0),若l1l2,则下列结论正确的有()A.1C.1解析:由椭圆1,可得:a2,b,c1,所以左、右焦点分别为F1(1,0),F2(1,0),设A(0,),则tanAF1F2,可得AF1F2,所以F1AF2.因为l1l2,所以直线l1与直线l2交点M在椭圆的内部,所以1,A正确,B不正确;直线1与椭圆1联立,可得7y224y270无解因此直线1与椭圆1无交点而点M在椭圆的内部,在直线的左下方,所以满足1,因此D正确答案:ACD

    展开阅读全文
    提示  课堂库(九科星学科网)所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2021高考数学人教版一轮复习多维层次练:第八章 第5节第2课时 直线与椭圆 WORD版含解析.doc
    链接地址:https://www.ketangku.com/wenku/file-522178.html
    相关资源 更多
  • 【官方原版】2024九省联考数学试卷.pdf【官方原版】2024九省联考数学试卷.pdf
  • 【九省联考模式】2024届吉林长春五校高三上学期联合模拟考试数学试题.pdf【九省联考模式】2024届吉林长春五校高三上学期联合模拟考试数学试题.pdf
  • 【九省联考】河南部分重点高中2024届高三上学期期末联考数学试卷.pdf【九省联考】河南部分重点高中2024届高三上学期期末联考数学试卷.pdf
  • 【九省联考】江苏省四校联合2024届高三新题型适应性考试数学试题.pdf【九省联考】江苏省四校联合2024届高三新题型适应性考试数学试题.pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形8、解三角形及其应用(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形8、解三角形及其应用(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形7、三角函数模型及其应用(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形7、三角函数模型及其应用(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形6、y%3dA的图象(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形6、y%3dA的图象(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形5、三角函数的图象与性质(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形5、三角函数的图象与性质(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形4、二倍角的正弦、余弦与正切(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形4、二倍角的正弦、余弦与正切(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形3、两角和与差的三角函数(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形3、两角和与差的三角函数(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形2、同角三角函数基本关系及诱导公式(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形2、同角三角函数基本关系及诱导公式(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形1、弧度制与任意角的三角函数(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第四章三角函数与解三角形1、弧度制与任意角的三角函数(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明7、合情推理与演绎推理(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明7、合情推理与演绎推理(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明5、数列求和(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明5、数列求和(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明4、等差、等比数列的综合(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明4、等差、等比数列的综合(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明3、等比数列(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明3、等比数列(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明2、等差数列(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明2、等差数列(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明1、数列的概念(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第六章数列、推理与证明1、数列的概念(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第八章5、空间几何体的表面积与体积(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第八章5、空间几何体的表面积与体积(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第八章3、直线与平面的垂直(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第八章3、直线与平面的垂直(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数9、函数的综合应用(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数9、函数的综合应用(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数8、函数模型及其应用(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数8、函数模型及其应用(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数7、函数与方程(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数7、函数与方程(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数6、函数的图象(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数6、函数的图象(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数5、对数与对数函数(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数5、对数与对数函数(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数3、二次函数与幂函数(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数3、二次函数与幂函数(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数2、函数的奇偶性、单调性及周期性(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数2、函数的奇偶性、单调性及周期性(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数1、函数及其表示(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第二章函数与基本初等函数1、函数及其表示(pdf含解析).pdf
  • 【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第九章平面解析几何初步9、轨迹问题(pdf含解析).pdf【3年高考2年模拟】2022届高考数学 专题讲解与精炼 第九章平面解析几何初步9、轨迹问题(pdf含解析).pdf
  • 关于我们 - 联系我们 - 加入我们 - 常用工具与软件 - 公益活动

    copyright@ 2020-2024 www.ketangku.com网站版权所有

    黑ICP备2024021605号-1